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Abstract: The prognostic assessment of an ICU patient involves assessing the severity of their condition, interventions, and length
of ICU stay. Over the past 30 years, researchers have proposed numerous predictive models and severity assessment scales for [CU
patients in specific regions, including APACHE II and SAPS II. However, most existing methods rely heavily on curve fitting which
do not account for misclassifications caused by false negatives and positives. Specificity and sensitivity must be provided as an
indicator of model performance. The primary aim in this study is to develop a machine-learning model to formulate a prognosis for
MICU and SICU patients by using data from the MIMIC-IV for training. The predictive models developed in this study facilitate
the prediction of mortality and other outcomes across various treatment regimens.
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1. Introduction

The prognostic assessment of an intensive care unit (ICU) patient involves assessing the severity of the condition, interventions,
and length of ICU stay [1]. Numerous predictive models and severity assessment scales have been developed for ICU patients to
predict mortality based on the baseline values of physiological parameters. Commonly used assessment scales include the Acute
Physiology and Chronic Health Evaluation (APACHE) [2], APACHE II [3], Simplified Acute Physiology Score (SAPS) [4], and
SAPS I [5]. SAPS Il and APACHE II are currently the predictive models most widely used in clinical practice. Despite such efforts
to adapt SAPS for specific regions (e.g., Southern and Mediterranean countries versus Central and Western Europe) [6—8], predicted
mortality rates are generally overestimated [9—13].

Most of the methods assess the severity of ICU cases that are based on logistic regression models, which impose strict
constraints on the relationship between explanatory variables and risk of death. For example, principal term logistic regression is
based on a linear and additive relationship between a predetermined transformation of the mean outcome and its predictors. However,
the factors related to death in ICU patients are complex, the underlying assumptions are often far from reality, and the predictive
power may be greatly reduced in a parametric model with too much deviation. Conversely, if a parametric model used is realistic,
it often provides excellent predictions. Therefore, the calibration of the bias of the current severity scale can largely attribute to the
underlying statistical model, rather than the variables selected for the model.

Numerous studies have concluded that the use of nonparametric methods to predict mortality in ICU patients is at least as good
as, and possibly better than traditional standard logistic regression [14—19]. Note that many of these methods are based on neural
networks or data mining. In 2019, Shillan et al. reviewed the literature on the use of machine learning to analyze ICU data, including
258 papers (24% used MIMIC-II/IIT). They determined the two most common Al methods that were used for neural network models
with support vector machine (SVM). Roughly 27% of the articles focused on mortality prediction with sample cohorts of 100—1,000
patients. Only 7% of the articles used independent test data. Most of them used k-fold cross-validation, followed by randomly
sampled test data subsets. Most of the studies used the area under the curve (AUC) to present prediction results [20], although AUC
depends heavily on curve fitting. The receiver operating characteristic curve AUC cannot account for misclassifications caused by
false negatives and positives. Specificity and sensitivity must also be provided as an indicator of model performance.
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Therefore, the primary aim of this study was to develop a machine learning-based model by which to perform prognostic
assessments of ICU patients based on the data from the Medical Information Mart for Intensive Care IV (MIMIC-1V) [21,22].
Previous studies combined data from MICU (medical ICU) and SICU (surgical ICU) despite fundamental differences in the causes
of death in the two facilities (i.e., organ failure in MICU versus infection in SICU). The predictive models developed in this study
can be used as a reference by ICU physicians in assessing mortality outcomes for a range of treatments.

2. Materials and Methods

2.1. MIMIC-1IV

The MIMIC database is an open-source electronic health record (EHR) dataset (e.g., clinical data, vital signs, and biochemistry)
from a large number of ICUs. The MIMIC database is created and managed by the Massachusetts Institute of Technology (MIT)
Laboratory. The current version is MIMIC-IV 1.0, covering the period from 2008 to 2019 [21]. The MIMIC-IV v1 includes 43 data
tables covering six category modules: CORE, HOSP, ICU, ED, CXR, and NOTE. The CORE module contains patient tracking data
(e.g., demographics, hospital admissions, and in-hospital ward transfers). The HOSP module contains data from a variety of hospital
departments (e.g., laboratory, pharmaceuticals, and diagnostics). The ED module contains data from emergency departments (e.g.,
reasons for admission, triage assessment, vital signs, and medicine reconciliation). The CXR module contains imaging data (e.g., chest
X-rays). The Note module contains deidentified free-text clinical notes. The ICU module contains ICU-specific data from the Clinical
Information System (CIS) (e.g., intravenous medications and ventilator settings). Note that the ICU data are from seven ICU branches,
including the CVICU (Cardiac Vascular Intensive Care Unit), CCU (Coronary Care Unit), MICU (Medical Intensive Care Unit),
MICU/SICU (Medical/Surgical Intensive Care Unit), Neuro SICU (Neuro Surgical Intensive Care Unit), SICU (Surgical Intensive
Care Unit), and TSICU (Trauma SICU). MICU and SICU account for more than half of the total number of patients.

2.2. Target Data Sifting

Target data for model development were collected by using patient identifiers from MICU and SICU facilities. Three MIMIC-IV
patient identifiers were used: subject id, hadm_id, and stay id. Every patient was assigned a unique subject _id. Patients were assigned
one hadm_id for each hospitalization. Patients were also assigned one stay id for each ICU admission. Thus, any given patient could
be tracked via one subject_id and at least one hadm_id or stay_id. Fig. 1 illustrates the process of target data collection, including data
related to the patient and data related to physiological measurements. Patient data collection focused on patients who visited the MICU
or SICU, which resulted in the following: subject _id (53,150), hadm_id (69,211), and stay-id (76,540). Retaining only the most recent
records of hospitalization and ICU admission resulted in an equal number of hadm_ id and stay id (53,150). Hans-Christian and
Thorsen-Meyer reported that predictions based on data obtained over 72 h resulted in an AUROC accuracy of 0.7 [20]. Exclusion
criteria included patients under the age of 18 and patients whose ICU stay was less than 3 days. Following exclusions, the study group
included 16,380 subject_ids.

Physiological measurements included 2,216 entries for the 16,380 subject ids in the MIMIC-IV table labeled “chartevents”.
Removal of non-numerical measurement data resulted in 358 measurements. Our focus on time-series data also led to the exclusion of
non-timed data, as shown in Table 1. This resulted in six measurements on MICU and nine measurements on SICU as shown in Table
2. The proposed model generated a prognosis for a period of 7, 14, or 28 days. Thus, we excluded patients whose ICU stay exceeded
30 days. This resulted in a total of 5,713 patients, including 3,087 MICU and 2,626 SICU patients.

53,150 mbicals N 16,380 palicnis
69211 tndm ids T 2216 measures
76,540 stayids
Exduding the non 1cal record
Fixed lutest admission record W
53,150 mibicnis 16,380 palicni=
53150 hadm ids 358 measmes
53150 stay ids
Fxcloding age less than 18 and discharpe time m 3 days* Excloding the valuc by mnit (Table 1)
- Calcnlating the maximom and mim of the
16,380 hoaddm s
16380 stay ds v v
MICU SIoU
3087 paticais 26216 paticnis
12 Eaimres 13 Eaiwes

Fig. 1. Process used in sifting through target data.
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Table 1. Physiological data discarded according to measurement units.

Unit Number of Discarded Measurements
cm 1
kg 1

/min 1

kcal/kg 71

g/kg 1

ml/kg 1

hour 1

degree 1

ears 3

inch 4
kcal/day 1
°C 2
°F 9
Ibs 3

Table 2. Measurements from the MICU and SICU.

MICU Measurements

SICU Measurements

Heart Rate
Non-Invasive Blood Pressure, systolic
Non-Invasive Blood Pressure, diastolic

Non-Invasive Blood Pressure, mean
Respiratory Rate
O, saturation pulse oximetry

Heart Rate
Non-Invasive Blood Pressure, systolic
Non-Invasive Blood Pressure, diastolic

Non-Invasive Blood Pressure, mean
Respiratory Rate
O, saturation pulse oximetry
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Arterial Blood Pressure, systolic
Arterial Blood Pressure, diastolic
Arterial Blood Pressure, mean

2.3. Development of Time-Series Data

The first step in developing time-series data was to screen out measurements obtained during the previous ICU stay using the
timestamps in the tables “chartevents” and “icustays”. Note that the above-mentioned data-sifting process resulted in six measurements
for MICU and nine measurements for SICU, both of which were compiled over 72 h. The measurements were then listed as hourly
observations, which were compiled in 72 tables. The maximum and minimum measurement values were used as features to generate a
prognosis, resulting in 12 features for MICU and 18 features for SICU. There was a serious problem concerning missing data for three
of the SICU measurements (systolic blood pressure, diastolic blood pressure, and mean arterial blood pressure). Specifically, these
measurements were linked to only 36 records with 2 cases of mortality. Thus, these three SICU measurements were excluded, leaving
12 SICU and 12 MICU features.

The problem of missing data, which is commonly encountered in machine learning applications, can be dealt with via data
imputation, wherein a synthetic value is assigned for each missing value [23]. For example, missing body height values could be filled
in as 170 cm, or missing body temperature values as 36.6°C. However, vital signs can be strongly correlated with each other. Therefore,
missing values cannot be filled in arbitrarily (i.e., the correlation between measurements must be taken into account). In the current
study, we employed the imputation method KNNImputer in the Python package Scikit-learn [24]. To minimize the skewing effects of
the imputed data, we applied an additional criterion wherein only patients with measurement data available for at least 64 hours were
included. This reduced the number of MICU patients to 726 and the number of SICU patients to 364. The prognostic outcomes in this
study were mortality and length of stay (LOS) in the ICU. In-hospital predictions of mortality were binary (alive or dead). The models
proposed in the current study estimated the probability of mortality in 7, 14, or 28 days. LOS values were obtained by using the
following attributions from the “admissions” table: “admittime” (admission time), “dischtime” (discharge time), and “deathtime” (time
of death).

2.4. Model Development

The proposed model was based on the extended least short-term memory model (LSTM) and a recurrent neural network (RNN)
applicable to the analysis of time-series data. We adopted the bidirectional-LSTM model in assessing the prognosis of ICU patients,
wherein each output was connected to the two previous vital sign measurements (obtained at intervals of one hour). As for
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hyperparameters, the output number of patients matched the input number using batches of 8, 16, and 32 (based on the number of
patients). The model developed in this study is shown in Fig. 2, where “t” indicates the length of the ICU stay (measured in hours), the
green block is the classification model used for mortality (two outputs), and the orange block is the model for LOS (one output). To
reduce the risk of overfitting, the loss function for LOS was multiplied by three during training, and early stop criteria (5 epochs) were
imposed. The fully connected layer is connected to outputs in a backpropagation manner. There were two fully connected models from
the same LSTM output. The fully connected neural network used the cross-entropy loss function for the mortality model and the mean
square error loss function for LOS. The prediction performance of the model was assessed in terms of accuracy, sensitivity, and
specificity.

_ t=1 t=2  t=3 t=72
nput | F—» F—» F— . ——1
- v A4 ¥ A4

hidden [ jt—] Jt | M—> [ ]

Fully connected layers | |

mortality Length of stay

Fig. 2. Proposed prediction model.

3. Results

Model performance was assessed by using 1,000 random samples. Training data included measurements from 90% of the
MICU patients and 50% of the SICU patients. The remaining data (10% MICU and 50% SICU) were used for testing. Using an
NVIDIA Tesla V100 GPU, roughly 2 min was required for the completion of each epoch.

3.1 Model Prediction

The number of survival cases greatly exceeded the number of deaths, so we based the number of training samples on the
number of deaths. Therefore, in the training, the numbers of images were the same from the classes of dead and alive patients.
Table 3 lists the sizes of MICU and SICU samples. Using the MICU 7-day sample for training, the number of deaths was calculated
as 82 x 0.9 = 73 (73 deaths and 73 survival cases), resulting in a training set with 146 samples. The testing dataset included 9 deaths
(82 x 0.1 Z9) and 571 survival cases (644 — 73 = 571). Using the SICU 7-day sample for training resulted in 17 deaths (34 x 0.5 =
17) matched with 17 survival cases. The testing dataset included 17 deaths (34 x 0.5 =17) and 313 survival cases (330 — 17 =313).

Model performance was evaluated based on accuracy, sensitivity, and specificity. Accuracy indicates the degree of
correspondence between the actual numbers of death and survival cases versus the predicted values. Sensitivity indicates the
proportion of actual deaths that were predicted. Specificity indicates the proportion of actual survival cases that were predicted.
Optimization was performed using three batch sizes (8, 16, and 32) and two optimization schemes, including Adam (Adaptive
Moment Estimation) and SGD (Stochastic Gradient Descent), with a dropout rate of 0.5. The SGD optimizer results were better
suited to SICU whereas the Adam optimizer results were better suited to MICU.

Table 3. Sample sizes for MICU and SICU.

MICU Death Alive Training Testing-death Testing-alive
7 days 82 644 146 9 571
14 days 162 564 290 17 419
28 days 212 514 380 22 323
SICU Death Alive Training Testing-death Testing-alive
7 days 34 330 34 17 313
14 days 53 311 52 27 285
28 days 70 294 70 35 259
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3.2 Performance Assessment

Tables 4 and 5 list the model training performance for MICU and SICU. Note that the values listed for accuracy, sensitivity,
and specificity are medians. In the parenthesis, the first value indicates the 75% quantile and the second value indicates the 25%
quantile. For both MICU and SICU model training, a batch size of 32 samples resulted in the best performance. Decreasing the
batch size was shown to undermine performance and led to overfitting. Even if the model’s predictions of LOS were not significantly
different between batch sizes and death identified (Tables 6 and 7), which also outperformed the model without using LOS loss.
Both models achieved the best accuracy, sensitivity, and specificity and the lowest interquartile ranges when using data of 28 days.

Table 4. Performance of LSTM model for MICU.

Batch size Death Identified Accuracy Sensitivity Specificity
32 7 days 0.62 (0.79, 0.33) 0.63 (0.80, 0.32) 0.67 (0.89, 0.33)
32 14 days 0.71 (0.79, 0.59) 0.72 (0.81, 0.59) 0.52 (0.71, 0.24)
32 28 days 0.70 (0.74, 0.62) 0.71 (0.75, 0.62) 0.63 (0.68, 0.50)
16 7 days 0.56 (0.84, 0.45) 0.55 (0.85, 0.44) 0.67 (0.78,0.31)
16 14 days 0.53 (0.74, 0.33) 0.52 (0.76, 0.31) 0.7 (0.88, 0.45)
16 28 days 0.64 (0.74, 0.6) 0.64 (0.75, 0.6) 0.59 (0.68, 0.53)
8 7 days 0.02 (0.84, 0.02) 0(0.85,0) 1(1,0)

8 14 days 0.63 (0.92, 0.37) 0.63 (0.95, 0.35) 0.58 (0.82, 0.16)
28 days 0.57 (0.72, 0.43) 0.56 (0.72, 0.41) 0.72 (0.78, 0.53)
Table 5. Performance of LSTM model for SICU.

Batch size Death Identified Accuracy Sensitivity Specificity
32 7 days 0.38 (0.96, 0.02) 0.37(0.98, 0.01) 0.75 (1.0, 0)
32 14 days 0.37 (0.74, 0.04) 0.36 (0.75, 0.02) 0.75 (1, 0.3)
32 28 days 0.69 (0.88,0.27) 0.71 (0.9, 0.25) 0.43 (0.86,0.14)
16 7 days 0.53(0.92,0.13) 0.53(0.94, 0.11) 0.75 (1.0, 0)
16 14 days 0.31 (0.98, 0.05) 0.3 (1.0, 0.04) 0.59 (1.0, 0)
16 28 days 0.62 (0.96, 0.06) 0.64 (0.99, 0.04) 0.21 (0.90, 0.21)
8 7 days 0.59(0.99, 0.12) 0.59(1.0,0.11) 0.25 (1.0, 0)

8 14 days 0.36 (0.8, 0.02) 0.36 (0.8, 0) 0.59 (1,0.17)
8 28 days 0.34 (0.94, 0.03) 0.34 (0.97, 0) 0.64 (1, 0.14)
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Table 6. Mean square error between ground truth values and predicted length of stay in MICU.

Batch size Death Identified Adam SGD

32 7 days 0.11(0.09, 0.11) 0.17 (0.15, 0.17)
32 14 days 0.09 (0.08,0.11) 0.15(0.13, 0.16)
32 28 days 0.06 (0.05, 0.08) 0.13 (0.1, 0.14)
16 7 days 0.14 (0.08, 0.14) 0.15(0.13,0.17)
16 14 days 0.08 (0.05,0.12) 0.15(0.11, 0.18)
16 28 days 0.08 (0.08, 0.09) 0.14 (0.13, 0.15)
8 7 days 0.12 (0.08, 0.15) 0.16 (0.12, 0.17)
8 14 days 0.09 (0.05, 0.16) 0.17 (0.11, 0.17)

28 days 0.05 (0.04, 0.06) 0.16 (0.13,0.17)
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Table 7. Mean square error between ground truth values and predicted length of stay in SICU

Batch size Death Identified Adam SGD
32 7 days 0.14 (0.1, 0.15) 0.17 (0.14, 0.18)
32 14 days 0.1(0.1,0.12) 0.17 (0.14, 0.18)
32 28 days 0.1(0.09,0.11) 0.16 (0.12, 0.16)
16 7 days 0.13 (0.8, 0.15) 0.17 (0.16, 0.18)
16 14 days 0.12(0.11, 0.14) 0.15(0.11, 0.17)
16 28 days 0.1(0.08,0.11) 0.15(0.14, 0.17)
8 7 days 0.12(0.09, 0.16) 0.15(0.13,0.17)
8 14 days 0.1(0.07,0.13) 0.14 (0.1, 0.17)
8 28 days 0.06 (0.04, 0.14) 0.17 (0.12, 0.17)
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4. Discussion and Conclusions

We developed LSTM models for generating prognoses in the MICU or SICU in terms of mortality and LOS. Experiment data
were extracted from the MIMIC-IV datasets. Model training was performed by using data obtained in the ICU over 72 h. A serious
problem was encountered related to missing data (hourly measurements of most vital signs), which resulted in the need for data
imputation and the exclusion of most patients (only patients for whom data were available for at least 64 hours were included). Thus,
the main factor affecting the performance of the proposed model was the issue of missing data. We found that increasing the batch
size and the length of the prediction period increased accuracy, wherein the optimal mortality prediction performance was achieved
with a batch size of 32 patients and a prediction window of 28 days. This appears reasonable considering that many patients will
die within 28 days despite surviving for 7 days.

The source of training data in this study was MIMIC-IV version 1.0, published in 2021. Data quality in this version has been
greatly improved over previous versions. In previous research based on the MIMIC I1I dataset, Sheikhalishahi (2020) used 48-hour
data to predict ICU mortality. Their models achieved high median sensitivity (~0.9) but low median specificity (~0.5), indicating
underfitting [23]. Barbieri (2020) compared neural networks and RNN models (single or mixed) [25], attention models, ordinary
differential equations, and medical concept embeddings. Using ICD codes, prescription data, and vital signs as prediction features,
RNN with an attention model provided the best prediction results for 30-day ICU mortality with a mean sensitivity of 0.7 and a
mean specificity of 0.66. The proposed model proved to be more effective than previous methods in terms of overfitting or
underfitting, resulting in superior median specificity (e.g., ~0.63 in MICU). The prediction results were on par with those obtained
using categorical data analysis and RNN models.
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