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Abstract: Based on the perspective of the quantum game, this paper explores when the online direct sales channel takes the free-
riding behavior after the retail channel provides high-quality experience and services and how the dual-channel supply chain 
establishes a commodity pricing strategy. The retailer’s selling price follows a decreasing function of the free-riding behavior 
coefficient. while the online direct selling price does an increasing function of the free-riding behavior coefficient. Under centralized 
decision-making, there is no quantum entanglement, so the quantum game solution is consistent with the classical game solution. 
Under decentralized decision-making, the optimal price and profit of the quantum game are higher than those of the classical game 
when the quantum entanglement degree is greater than zero. When the quantum entanglement tends to be infinite, the optimal price 
of the quantum game finally remains in convergence. The quantum game theory is a more optimal decision-making method than 
the classical game theory. 
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1. Introduction 

With the advancement of science and technology, the world has entered an era of informatization such that e-commerce is 
booming. The vigorous development of e-commerce has promoted the popularization of online consumption. Traditional retail 
methods no longer meet the shopping needs of consumers. Manufacturers have opened up online direct sale channels one after 
another, such that the dual-channel model where retail channels and online direct sales channels coexist is developing rapidly. In 
the shopping environment of a dual-channel supply chain, consumers are faced with more choices of products and services than 
before and easily switch between different channels to meet their purchase needs (Tsay & Agrawal, 2004).  

Canton and Chevalier (2001) believe that the efforts of retailers promote the occurrence of free-riding behaviors. The 
advertisement cost of the traditional branded products, space cost of commodity displaying, and service cost of commodity selling 
in offline stores are borne by manufacturers and retailers. Customers obtain the information about the product and enjoy the service, 
but at this time they tend to buy the product online at lower prices. This behavior of consumers weakens the enthusiasm of retailers 
for sales efforts and affects the manufacturers’ decision-making. Wu et al. (2004) believed that information service has the 
characteristics of public goods, and consumers use the information service to make an informed purchase decision. After receiving 
the information service from an information service provider, consumers easily free ride by purchasing at low-price sellers who do 
not provide any information service. 

There are many achievements in the research of dual-channel supply chain, and the problem of pricing decision has always 
attracted much research interest (Chiang et al., 2003). The methods of studying the pricing decision and coordination strategy of 
dual-channel supply chain mostly adopt Cournot, Stackelberg. or Bertrand classic game theory. Yao and Liu (2005) studied the 
Bertrand and Stackelberg price competition models in dual channels. They obtained both the Bertrand and Stackelberg equilibrium 
pricing policies and compared the profit gains under the two competitions. Kurata et al. (2007) explored cross-brand and cross-
channel pricing policies and assed supply chain coordination. They found that the wholesale price change does not coordinate the 
supply chain, and an appropriate combination of markup and markdown prices achieves both supply chain coordination and a win-
win outcome for each channel. Basak and Wang (2019) studied the endogenous choice of price and quantity competition in a mixed 
duopoly. They found that the profit of the Cournot model is significantly higher than that of the Bertrand model in the standard 
oligopoly and the opposite is found in the mixed oligopoly. 

In 1999, Meyer proposed the theory of quantum games and found that a player using quantum strategies always defeats an 
opponent who uses classical strategies (Meyer, 1999). Eisert et al. (1999) introduced quantum strategy into the Prisoners’ Dilemma 
and used quantum entanglement to eliminate the dilemma. They found that this game ceases to pose a dilemma if quantum strategies 
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are allowed. Many studies found that quantum games solve some of the difficult problems encountered in classical game theory. 
There is a relationship of competition and cooperation between manufacturer and retailer in the dual-channel supply chain. The 
relationship of competition and cooperation creates the phenomenon of quantum entanglement. With the closer competition or 
cooperation between manufacturer and retailer, the degree of quantum entanglement increases. How to price a commodity to obtain 
the optimal profit is a more complicated problem than the classic game pricing problem, as every quantum entanglement degree 
corresponds to a classical game pricing problem. 

This paper discusses the following problem from the perspective of a quantum game: how does the free-riding behavior of 
online direct sales channels affect commodity pricing, demand, and supply chain profits, and when the retail channels in the dual-
channel supply chain provide services. 

2. Dual-channel Supply Chain 

2.1. Problem Description 

The supply chain structure that consists of one manufacturer and one retailer is considered (Fig. 1). Manufacturer 𝑀𝑀 has a 
dual-channel supply chain and sells a product through the retail channel and the online channel at the same time. In Figure 1, the 
product cost is 𝑐𝑐, the wholesale price of the retailer 𝑇𝑇 to purchase is 𝜔𝜔, the retail channel sales price is 𝑝𝑝0, and the online direct 
sales price is 𝑝𝑝1. 

 

 

 

 

 
 
 

 

Fig. 1. The structure of the dual-channel supply chain. 

2.2. Basic Hypotheses 

To make the model rigorous, the following hypotheses are proposed. 

Hypothesis 1. Both manufacturer and retailer are rational managers. To ensure the basic profitability of the enterprises, 0 < 𝑐𝑐 <
𝜔𝜔 < 𝑝𝑝0, 𝑝𝑝1 is assumed. 

Hypothesis 2. 𝛼𝛼 is the channel cross-elasticity coefficient in the dual-channel supply chain, which states the degree of sensitivity 
of the product demand of one channel in the dual-channel supply chain to the price changes of another channel. Thus, 0 < 𝛼𝛼 < 1. 

Hypothesis 3. Retail channels provide more types of services than online channels such as on-site explanations, product experience, 
and so on. Only retail channels provide services, while online channels do not. Retailer 𝑇𝑇 provides the level of service 𝑠𝑠 for the 
product spend service cost 𝑐𝑐(𝑠𝑠) = 1

2
𝜂𝜂𝑠𝑠2, where 𝜂𝜂 > 0 is the unit service cost spent by the retailer on the product. 

2.3. Demand Function and Profit Function 

This paper refers to the linear demand functions based on the price and service sensitivity that was established by Banker et 
al. (1988) and Huang and Swaminathan (2009) to establish the demand function. The demand functions of retailer 𝑇𝑇  and 
manufacturer 𝑀𝑀 are as follows. 

𝑄𝑄0 = 𝑎𝑎0 − 𝑏𝑏0 𝑝𝑝0 + 𝛼𝛼 𝑝𝑝1 + (1 − 𝜆𝜆)𝑠𝑠,                          (1) 

𝑄𝑄1 = 𝑎𝑎1 − 𝑏𝑏1𝑝𝑝1 + 𝛼𝛼𝑝𝑝0 + 𝜆𝜆𝑠𝑠,                              (2) 
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where 𝑄𝑄0 and 𝑄𝑄1 represent the demand functions for the retail and the online channels of the dual-channel supply chain and 𝑏𝑏0 
and 𝑏𝑏1 represent the direct price elasticity coefficient for the retail and the online channel of the dual-channel supply chain. When 
𝑎𝑎𝑗𝑗 is positive and stable, representing the potential market size corresponding to 𝑄𝑄𝑗𝑗 , 𝑗𝑗 = 0, 1. When 𝜆𝜆 represents the free-riding 
behavior coefficient of online channels of the dual-channel supply chain, the parameters satisfy 𝑏𝑏𝑗𝑗 > 1, 𝑗𝑗 = 0, 1, and 0 < 𝜆𝜆 < 1.  

According to the problem description, basic hypotheses and demand functions, the total profit function of the retailer 𝑇𝑇, the 
total profit functions of manufacturer 𝑀𝑀 are represented by 𝜋𝜋0 and 𝜋𝜋1, respectively as follows. 

𝜋𝜋0 = (𝑝𝑝0 − 𝜔𝜔) 𝑄𝑄0 −
1
2
𝜂𝜂 𝑠𝑠2,          (3) 

𝜋𝜋1 = (𝜔𝜔 − 𝑐𝑐) 𝑄𝑄0 + (𝑝𝑝1 − 𝑐𝑐) 𝑄𝑄1,          (4) 

The overall supply chain profit 𝜋𝜋𝑆𝑆𝑆𝑆  of retailer 𝑇𝑇 and manufacturer 𝑀𝑀 is 

𝜋𝜋𝑆𝑆𝑆𝑆 = (𝑝𝑝1 − 𝑐𝑐)𝑄𝑄1 + (𝑝𝑝0 − 𝑐𝑐)𝑄𝑄0 −
1
2
𝜂𝜂 𝑠𝑠2.

                       
(5) 

2.4. Solutions of the Classic Game 

Using classical game theory to solve the optimal profit of each player and the overall supply chain, the following relevant 
decision-making strategies is obtained. 

2.4.1. Decentralized Decision-making 

According to the first derivative condition of the profit functions 
𝜕𝜕𝜋𝜋𝑗𝑗
𝜕𝜕𝑝𝑝𝑗𝑗

= 0, 𝑗𝑗 = 0, 1, we obtain 𝐴𝐴𝐴𝐴 = 𝐷𝐷, where 

𝐴𝐴 = �2𝑏𝑏0 −𝛼𝛼
−𝛼𝛼 2𝑏𝑏1

�，𝐴𝐴 = �
𝑝𝑝0
𝑝𝑝1�，𝐷𝐷 = � 𝑎𝑎0 + (1 − 𝜆𝜆)𝑠𝑠 + 𝑏𝑏0𝜔𝜔

𝑎𝑎1 + 𝜆𝜆𝑠𝑠 + 𝛼𝛼𝜔𝜔 − 𝛼𝛼𝑐𝑐 + 𝑏𝑏1𝑐𝑐
�. 

According to the second derivative condition of the profit functions 𝜕𝜕
2𝜋𝜋0
𝜕𝜕𝑝𝑝0

2 = −2𝑏𝑏0 < 0 and 𝜕𝜕
2𝜋𝜋1
𝜕𝜕𝑝𝑝1

2 = −2𝑏𝑏1 < 0, this classic 

game model allows the optimal prices. 
The determinant of matrix 𝐴𝐴 is |𝐴𝐴| = 4𝑏𝑏0𝑏𝑏1 − 𝛼𝛼2 > 0, as 𝑏𝑏𝑗𝑗 > 1, 𝑗𝑗 = 0, 1, and 0 < 𝛼𝛼 < 1. We, then, obtain the following 

optimal prices by the Cramer’s rule. 

�̄�𝑝0∗ = 2𝑏𝑏1[𝑎𝑎0+(1−𝜆𝜆)𝑠𝑠+𝑏𝑏0𝜔𝜔]+(𝑎𝑎1+𝜆𝜆𝑠𝑠+𝑏𝑏1𝑐𝑐)𝛼𝛼+(𝜔𝜔−𝑐𝑐)𝛼𝛼2

4𝑏𝑏0𝑏𝑏1−𝛼𝛼2
,                 (6) 

�̄�𝑝1∗ = 2𝑏𝑏0(𝑎𝑎1+𝜆𝜆𝑠𝑠+𝑏𝑏1𝑐𝑐)+𝛼𝛼[𝑎𝑎0+(1−𝜆𝜆)𝑠𝑠+𝑏𝑏0(3𝜔𝜔−2𝑐𝑐)]
4𝑏𝑏0𝑏𝑏1−𝛼𝛼2

.                   (7) 

Substituting the optimal prices into Equations (3) and (4), we obtain the optimal profit of each game player.  

2.4.2. Centralized Decision-making 

According to the first derivative condition of the overall profit of the supply chain 𝜕𝜕𝜋𝜋𝑠𝑠𝑠𝑠
𝜕𝜕𝑝𝑝𝑗𝑗

= 0, 𝑗𝑗 = 0, 1, and the Hessian matrix 

𝐻𝐻 = �−2𝑏𝑏0 2𝛼𝛼
2𝛼𝛼 −2𝑏𝑏1

�, the optimal price is obtained as follows. 

�̄�𝑝0𝑐𝑐∗ = 1
�𝐴𝐴′�
�𝑎𝑎0 + (1 − 𝜆𝜆)𝑠𝑠 + (𝑏𝑏0 − 𝛼𝛼)𝑐𝑐 −2𝛼𝛼

𝑎𝑎1 + 𝜆𝜆𝑠𝑠 + (𝑏𝑏1 − 𝛼𝛼)𝑐𝑐 2𝑏𝑏1
�,                                (8) 

�̄�𝑝1𝑐𝑐∗ = 1
�𝐴𝐴′�
� 2𝑏𝑏0 𝑎𝑎0 + (1 − 𝜆𝜆)𝑠𝑠 + (𝑏𝑏0 − 𝛼𝛼)𝑐𝑐
−2𝛼𝛼 𝑎𝑎1 + 𝜆𝜆𝑠𝑠 + (𝑏𝑏1 − 𝛼𝛼)𝑐𝑐 �,                                (9) 
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where 𝐴𝐴′ = � 2𝑏𝑏0 −2𝛼𝛼
−2𝛼𝛼 2𝑏𝑏1

�,
 
�𝐴𝐴′� = 4𝑏𝑏0𝑏𝑏1 − 4𝛼𝛼2, i.e.,  

�̄�𝑝0𝑐𝑐∗ = 𝑏𝑏1[𝑎𝑎0+(1−𝜆𝜆)𝑠𝑠+𝑏𝑏0𝑐𝑐]+𝛼𝛼(𝑎𝑎1+𝜆𝜆𝑠𝑠−𝑐𝑐𝛼𝛼)
2(𝑏𝑏0𝑏𝑏1−𝛼𝛼2)

,                        (10) 

�̄�𝑝1𝑐𝑐∗ = 𝑏𝑏0(𝑎𝑎1+𝜆𝜆𝑠𝑠+𝑏𝑏1𝑐𝑐)+𝛼𝛼[𝑎𝑎0+(1−𝜆𝜆)𝑠𝑠−𝑐𝑐𝛼𝛼]
2(𝑏𝑏0𝑏𝑏1−𝛼𝛼2)

.                        (11) 

Substituting the optimal prices into Equation (5), we obtain the optimal overall profit of the supply chain. 

3. Quantum Game Model 

A quantum game model in Fig. 2 is considered in this study. 

 

 

 

 

 
 
 

Fig. 2. Quantum structure of dual-channel supply chain. 

When a manufacturer and a retailer start the game from the quantum state |𝑣𝑣𝑎𝑎𝑐𝑐⟩0 ⊗ |𝑣𝑣𝑎𝑎𝑐𝑐⟩1. the initial state is transformed 
into the following quantum entangled state  

| 𝜑𝜑⟩ = 𝐽𝐽(𝛾𝛾)(|𝑣𝑣𝑎𝑎𝑐𝑐⟩0 ⊗ |𝑣𝑣𝑎𝑎𝑐𝑐⟩1),                                (12) 

through a specific unitary operator 

𝐽𝐽(𝛾𝛾) = 𝑒𝑒𝑒𝑒𝑝𝑝� i 𝛾𝛾�𝑋𝑋�0𝐴𝐴�1 + 𝑋𝑋�1𝐴𝐴�0� �,                              (13) 

where 𝑋𝑋�𝑗𝑗 = 1
√2

(𝑎𝑎�𝑗𝑗+ + 𝑎𝑎�𝑗𝑗)，𝐴𝐴�𝑗𝑗 = 𝑖𝑖
√2

(𝑎𝑎�𝑗𝑗+ − 𝑎𝑎�𝑗𝑗)，𝑗𝑗 = 0, 1, and 𝑖𝑖 = √−1. 

After the player selects the strategy, the strategy operator is represented by the positive operator D and E, x and y represent 
the strategy of the game, Dx=y. 

The quantum entanglement state is determined when the player chooses different strategies from the strategy set 𝑆𝑆𝑗𝑗 (𝑗𝑗 = 0, 1). 
The strategy operator is represented by the unitary operators 𝐷𝐷�0 and 𝐷𝐷�1, where  

𝐷𝐷�𝑗𝑗(𝑒𝑒𝑗𝑗) = 𝑒𝑒𝑒𝑒𝑝𝑝  �−𝑖𝑖𝑒𝑒𝑗𝑗𝐴𝐴�𝑗𝑗� ,                                   (14) 

𝑆𝑆𝑗𝑗 = � 𝐷𝐷�𝑗𝑗(𝑒𝑒𝑗𝑗) = 𝑒𝑒𝑒𝑒𝑝𝑝  �−𝑖𝑖𝑒𝑒𝑗𝑗𝐴𝐴�𝑗𝑗� � 𝑒𝑒𝑗𝑗 ∈ (−∞, +∞)� .                       (15) 

By the action of the operator 𝐽𝐽(𝛾𝛾)+, when the game is over, the final state is J=1. After the game is over, the final state is 
expressed as 

� 𝜑𝜑𝑓𝑓� = 𝐽𝐽(𝛾𝛾)+(𝐷𝐷�0 ⊗ 𝐷𝐷�1) ⋅ 𝐽𝐽(𝛾𝛾)(|𝑣𝑣𝑎𝑎𝑐𝑐⟩0 ⊗ |𝑣𝑣𝑎𝑎𝑐𝑐⟩1).                     (16) 

𝐷𝐷�0 

 
| 𝜑𝜑⟩ 
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By the measurement device, the relationship between the player’s quantum strategy and the price is defined as 

𝑝𝑝0(𝑒𝑒0, 𝑒𝑒1,) = 𝑒𝑒0 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 + 𝑒𝑒1 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾,         (17) 

𝑝𝑝1(𝑒𝑒0,𝑒𝑒1,) = 𝑒𝑒1 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 + 𝑒𝑒0 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾,                              (18) 

where 𝛾𝛾 is the degree of quantum entanglement, 𝑒𝑒0 and 𝑒𝑒1 represent the strategies in the quantum game, and 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 = 𝑒𝑒𝛾𝛾−𝑒𝑒−𝛾𝛾

2
, 

𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 = 𝑒𝑒𝛾𝛾+𝑒𝑒−𝛾𝛾

2
. 

3.1. Decentralized Decision-making in Quantum Game  

Substituting Equations (17) and (18) of the relationship between quantum strategies and prices into Equations (1) and (2) leads 
to the demand functions of retailer and manufacturer as follows. 

𝑄𝑄0 = 𝑒𝑒0(−𝑏𝑏0 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 + 𝛼𝛼 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾) + 𝑒𝑒1(−𝑏𝑏0 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 + 𝛼𝛼 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾) + 𝑎𝑎0 + (1 − 𝜆𝜆)𝑠𝑠,
  

   (19) 

𝑄𝑄1 = 𝑒𝑒0(−𝑏𝑏1 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 + 𝛼𝛼 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾) + 𝑒𝑒1(−𝑏𝑏0 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 + 𝛼𝛼 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾) + 𝑎𝑎1 + 𝜆𝜆𝑠𝑠.
       

   (20) 

Under decentralized decision-making, when manufacturer and retailer have an equal status in price decision-making, each game 
player aims to maximize the profit for the quantum game, then the optimal prices solutions 𝑝𝑝0∗ and 𝑝𝑝1∗ are obtained as the following 
theorem. 

Theorem 1. Under the influence of the free-riding behavior of online direct sales channels, the optimal prices of the quantum game 
between retailer 𝑇𝑇 and manufacturer 𝑀𝑀 in decentralized decision-making are calcucated as follows. 

𝑝𝑝0∗ =
1

|𝐵𝐵| � 
[2𝑏𝑏1(𝑎𝑎0 + (1 − 𝜆𝜆)𝑠𝑠 + 𝑏𝑏0𝜔𝜔) + (𝑎𝑎1 + 𝜆𝜆𝑠𝑠 + 𝑏𝑏1𝑐𝑐)𝛼𝛼 + (𝜔𝜔 − 𝑐𝑐)𝛼𝛼2] 𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 + 𝜔𝜔𝛼𝛼2 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾 

+[(𝑏𝑏0𝑐𝑐 − 2𝑏𝑏0𝜔𝜔 − 2𝑏𝑏1𝜔𝜔 − 𝑎𝑎0 − (1 − 𝜆𝜆)𝑠𝑠)𝛼𝛼 − 𝑐𝑐𝛼𝛼2] 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾},       (21) 

𝑝𝑝1∗ =
1

|𝐵𝐵| � 
[2𝑏𝑏0(𝑎𝑎1 + 𝜆𝜆𝑠𝑠 + 𝑏𝑏1𝑐𝑐) + (𝑎𝑎0 + (1 − 𝜆𝜆)𝑠𝑠 − 2𝑏𝑏0𝑐𝑐 + 3𝑏𝑏0𝜔𝜔)𝛼𝛼] 𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 + (𝑏𝑏0(𝜔𝜔 − 𝑐𝑐)𝛼𝛼 + 𝑐𝑐𝛼𝛼2) 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾 + [

− 2𝑏𝑏02(𝜔𝜔 − 𝑐𝑐) − (𝑎𝑎1 + 𝜆𝜆𝑠𝑠 + 2𝑏𝑏0𝑐𝑐 + 𝑏𝑏1𝑐𝑐)𝛼𝛼 
−(2𝜔𝜔 − 𝑐𝑐)𝛼𝛼2)]𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾}.             (22) 

Here, 

|𝐵𝐵| = 4𝑏𝑏0𝑏𝑏1 𝑐𝑐𝑐𝑐𝑠𝑠ℎ
2 𝛾𝛾 − 2𝛼𝛼(𝑏𝑏0 + 𝑏𝑏1) 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 − 𝛼𝛼2

     
                   (23) 

is the determinant of matrix 𝐵𝐵 = �𝐵𝐵11 𝐵𝐵12
𝐵𝐵21 𝐵𝐵22

�, where  

𝐵𝐵11 = 2𝑏𝑏0 𝑐𝑐𝑐𝑐𝑠𝑠ℎ
2 𝛾𝛾 − 2𝛼𝛼 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾, 

𝐵𝐵12 = 2𝑏𝑏0 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 − 𝛼𝛼(𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 + 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾), 
𝐵𝐵21 = 2𝑏𝑏1 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 − 𝛼𝛼(𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 + 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾), 
𝐵𝐵22 = 2𝑏𝑏1 𝑐𝑐𝑐𝑐𝑠𝑠ℎ

2 𝛾𝛾 − 2𝛼𝛼 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾. 

Proof. Refer to Appendix 1. 
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Note. (1) When 𝛾𝛾 = 0, that is, when there is no quantum entanglement state between the retailer and the manufacturer, |𝐵𝐵| =
4𝑏𝑏0𝑏𝑏1 − 𝛼𝛼2, and  

𝑝𝑝0∗ =
2𝑏𝑏1[𝑎𝑎0 + (1 − 𝜆𝜆)𝑠𝑠 + 𝑏𝑏0𝜔𝜔] + (𝑎𝑎1 + 𝜆𝜆𝑠𝑠 + 𝑏𝑏1𝑐𝑐)𝛼𝛼 + (𝜔𝜔 − 𝑐𝑐)𝛼𝛼2

4𝑏𝑏0𝑏𝑏1 − 𝛼𝛼2
= �̄�𝑝0∗, 

𝑝𝑝1∗ =
2𝑏𝑏0(𝑎𝑎1 + 𝜆𝜆𝑠𝑠 + 𝑏𝑏1𝑐𝑐) + 𝛼𝛼[𝑎𝑎0 + (1 − 𝜆𝜆𝑠𝑠) + 𝑏𝑏0(3𝜔𝜔 − 2𝑐𝑐)]

4𝑏𝑏0𝑏𝑏1 − 𝛼𝛼2
= �̄�𝑝1∗. 

At this time, the solutions are consistent with Equations (6) and (7). That is, the quantum game model changes to the classical 
game model when the quantum entanglement 𝛾𝛾 = 0. 

(2) When 𝛾𝛾 → ∞, the optimal prices of the quantum game are calculated as 

𝑝𝑝0∗ = 2𝑏𝑏1(𝑎𝑎0+(1−𝜆𝜆)𝑠𝑠+𝑏𝑏0𝜔𝜔)+[(𝑎𝑎1−𝑎𝑎0)−(1−2𝜆𝜆)𝑠𝑠−(𝑏𝑏0+𝑏𝑏1)(2𝜔𝜔−𝑐𝑐)]𝛼𝛼+2(𝜔𝜔−𝑐𝑐)𝛼𝛼2

4𝑏𝑏0𝑏𝑏1−2𝛼𝛼(𝑏𝑏0+𝑏𝑏1)
,    (24) 

𝑝𝑝1∗ = 2𝑏𝑏0(𝑎𝑎1+𝜆𝜆𝑠𝑠+𝑏𝑏1𝑐𝑐−𝑏𝑏0𝜔𝜔+𝑏𝑏0𝑐𝑐)+[(𝑎𝑎0−𝑎𝑎1)+(1−2𝜆𝜆)𝑠𝑠+4𝑏𝑏0𝜔𝜔−5𝑏𝑏0𝑐𝑐−𝑏𝑏1𝑐𝑐)]𝛼𝛼−2(𝜔𝜔−𝑐𝑐)𝛼𝛼2

4𝑏𝑏0𝑏𝑏1−2𝛼𝛼(𝑏𝑏0+𝑏𝑏1)
.   (25) 

as the quantum entanglement between the retailer and the manufacturer increases to infinity. 

Corollary 1. The free-riding behavior of the online direct sales channel affects the prices of the two channels of the dual-channel 
supply chain. In fact, 

(1) 𝜕𝜕𝑝𝑝0
𝜕𝜕𝜆𝜆

< 0.  Retailer’s selling price 𝑝𝑝0  is expressed as a decreasing function of 𝜆𝜆 . As the coefficient of free-riding behavior 
increases, the price of the retail channel decreases.  

(2) 𝜕𝜕𝑝𝑝1
𝜕𝜕𝜆𝜆

> 0.  The online direct selling price 𝑝𝑝1  is expressed as an increasing function of 𝜆𝜆 . As the coefficient of free-riding 
behavior increases, the price of online direct sales channels increases.  

Proof. When the derivative of 𝜆𝜆 is input to Equation (19) and (20), since 𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 − 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾 = 1, 𝑏𝑏0, 𝑏𝑏1 > 1 > 𝛼𝛼, we have 

𝜕𝜕𝑝𝑝0
𝜕𝜕𝜆𝜆

= 1
|𝐵𝐵|
�(−2𝑏𝑏1 + 𝛼𝛼)𝑠𝑠 𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 + 𝛼𝛼𝑠𝑠 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾� = 1

|𝐵𝐵|
[(−𝑏𝑏1 + 𝛼𝛼)𝑠𝑠𝑒𝑒𝛾𝛾 − 𝑏𝑏1𝑒𝑒−𝛾𝛾] < 0,      (26) 

𝜕𝜕𝑝𝑝1
𝜕𝜕𝜆𝜆

= 1
|𝐵𝐵|
�(2𝑏𝑏0 − 𝛼𝛼)𝑠𝑠 𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 − 𝛼𝛼𝑠𝑠 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾� = 1

|𝐵𝐵|
[(𝑏𝑏0 − 𝛼𝛼)𝑠𝑠𝑒𝑒𝛾𝛾 + 𝑏𝑏0𝑒𝑒−𝛾𝛾] > 0.      (27) 

Significance of management decisions: (1) With the increase in the coefficient of free-riding behavior, the free-riding behavior of 
online direct sales channels saves the cost of advertising and services so that the price of goods is moderately reduced. The price of 
online direct sales channels is reduced, which increases sales. The retailer chooses to sell goods at lower prices for competition. (2) 
With the increase in the coefficient of free-riding behavior, the online direct sales channel indirectly attracts customers by a large 
number of high-quality experiences and services provided by retailers, leading to a large increase in demand. The increase in demand 
also leads to an increase in price. 

3.2. Centralized Decision-making in Quantum Game 

Under centralized decision-making, manufacturer and retailer are regarded as a whole. They take the overall supply chain 
profit maximization as the goal to conduct quantum games, then we obtain the optimal price solutions 𝑝𝑝0𝑐𝑐∗ and 𝑝𝑝1𝑐𝑐∗ according to 
the following theorem. 

Theorem 2. Under the influence of the free-riding behavior of online direct sales channels, the optimal prices of the quantum game 
between retailer 𝑇𝑇 and manufacturer 𝑀𝑀 in centralized decision-making are as follows. 
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𝑝𝑝0𝑐𝑐∗ = 𝑏𝑏1(𝑎𝑎0+(1−𝜆𝜆)𝑠𝑠+𝑏𝑏0𝑐𝑐)+𝛼𝛼(𝑎𝑎1+𝜆𝜆𝑠𝑠−𝑐𝑐𝛼𝛼)
2(𝑏𝑏0𝑏𝑏1−𝛼𝛼2)

= �̄�𝑝0𝑐𝑐∗,                     (26) 

𝑝𝑝1𝑐𝑐∗ = 𝑏𝑏0(𝑎𝑎1+𝜆𝜆𝑠𝑠+𝑏𝑏1𝑐𝑐)+𝛼𝛼(𝑎𝑎0+(1−𝜆𝜆)𝑠𝑠−𝑐𝑐𝛼𝛼)
2(𝑏𝑏0𝑏𝑏1−𝛼𝛼2)

= �̄�𝑝1𝑐𝑐∗.                      (27) 

Proof. Refer to Appendix 2. 

Note. Under centralized decision-making, manufacturer and retailer are regarded as a whole. With the degree of quantum 
entanglement 𝛾𝛾 = 0, we have 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 = 𝑒𝑒𝛾𝛾−𝑒𝑒−𝛾𝛾

2
= 0, and 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 = 𝑒𝑒𝛾𝛾+𝑒𝑒−𝛾𝛾

2
= 1. The prices of centralized decision-making of the 

quantum game model are consistent with the prices calculated by Eequations  (10) and (11) based on the centralized decision-
making of the classic game model. 

4. Numerical Analysis 

To further understand the influence of the parameters of the decentralized and centralized decision-making models under the 
quantum game point of view on optimal pricing and profits, numerical simulations are carried out by using Mathematica. The 
parameters of the quantum game model are shown in Table 1. After calculation, the optimal prices and profits in decentralized and 
centralized decision-making are obtained as shown in Table 2. Under decentralized decision-making, the comparison of optimal 
prices and optimal profits between the quantum game and the classical game is shown in Table 3. 

Table 1. The parameter values of the quantum game model.  

Symbols and description Value Symbols and description Value 
Potential market size of retail channel 𝑎𝑎0 200 Potential market size of online channel 𝑎𝑎1 150 
Product cost 𝑐𝑐 20 Wholesale price 𝜔𝜔 25 
Price elasticity of product in retail channel 𝑏𝑏0 1.5 Price elasticity of product in online channel 𝑏𝑏1 1.4 
Unit service cost 𝜂𝜂 2 Service level 𝑠𝑠 1.6 
Channel cross-elasticity coefficient 𝛼𝛼 0.4 Degree of quantum entanglement 𝛾𝛾 1 
The free-riding behavior coefficient 𝜆𝜆 0.5   

By comparing the optimal prices of decentralized decision-making and centralized decision-making as in Table 2, the following 
results are found. 
(1) The optimal price of each game player under decentralized decision-making is lower than the optimal price under centralized 
decision-making.  
(2) Whether under decentralized decision-making or centralized decision-making, the optimal price of retailers is higher than that 
of online direct selling optimal price of manufacturers. 

Table 2. The optimal prices and optimal profits of decentralized and centralized decision-making in the quantum game model. 

Decentralized Decision Making Centralized Decision Making 
Symbols and Description Value Symbols and Description Value 

Optimal pricing in retail channel 𝑝𝑝0∗ 89.83 Optimal pricing in retail channel 𝑝𝑝0𝑐𝑐∗ 98.09 
Optimal pricing for online channel 𝑝𝑝1∗ 77.48 Optimal pricing for online channel 𝑝𝑝1𝑐𝑐∗ 89.10 

Optimal profit in retail channel 𝜋𝜋0∗ 6,301.21 Optimal profit in retail channel 𝜋𝜋0𝑐𝑐∗ 6,538.6 
Optimal profit in online channel 𝜋𝜋1∗ 4,996.12 Optimal profit in online channel 𝜋𝜋1𝑐𝑐∗ 4,973.41 
The overall optimal profit of the supply 
chain 𝜋𝜋𝑠𝑠𝑐𝑐∗  

1,129,703 The overall optimal profit of the supply 
chain 𝜋𝜋𝑠𝑠𝑐𝑐𝑐𝑐∗ 

11,512 
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Table 3. Comparison between the quantum game and classical game. 

Quantum Game (choose 𝜸𝜸 = 𝟏𝟏) Classical Game (choose 𝜸𝜸 = 𝟎𝟎) 
Symbols and Description Value Symbols and Description Value 

Optimal pricing in retail channel 𝑝𝑝0∗ 99.23 Optimal pricing in retail channel �̄�𝑝0∗ 89.83 
Optimal pricing for online channel 𝑝𝑝1∗ 85.07 Optimal pricing for online channel �̄�𝑝1∗ 77.48 

Optimal profit in retail channel 𝜋𝜋0∗ 6,394.05 Optimal profit in retail channel �̄�𝜋0∗ 6,301.21 
Optimal profit in online channel 𝜋𝜋1∗ 5,089.61 Optimal profit in online channel �̄�𝜋1∗ 4,996.12 
The overall optimal profit of the supply 
chain 𝜋𝜋𝑠𝑠𝑐𝑐∗  

11,483.7 The overall optimal profit of the supply 
chain �̄�𝜋𝑠𝑠𝑐𝑐∗  

1,129,703 

By comparing the optimal prices and optimal profits of the quantum game and classical game as shown in Table 3, it is found 
that the optimal prices and optimal profits of the quantum game are higher than those of the classical game. 

4.1. Parameter Sensitivity Analysis of Decentralized Decision-making 

Exploring the influence of the changes of various parameters of decentralized decision-making on the optimal price and profit 
is conducive to decision-makers to formulate improvement strategies and form decisions. Under decentralized decision-making, the 
impact of the free-rider coefficient on optimal prices and profits is shown in Figures 3 and 4. The influence of the channel cross 
coefficient on optimal price and profit is shown in Figures 5 and 6. 

 

Fig. 3. The relationship between free-riding behavior coefficient and prices under decentralized decision-making. 

 

Fig. 4. The relationship between free-riding behavior coefficient and profits under decentralized decision-making. 

Figs. 3 and 4 show that the price and profit functions of the online direct sales channel are increasing as they are expressed as 
functions of the free-riding behavior coefficient, and the price and profit functions of the retail channel are decreasing. When the 
free-riding behavior coefficient increases, the increasing demand for the online direct sales channel leads to an increase in prices 
and profits. At the same time, the reducing demand for the retail channel allows the retailer to sell at lower prices to compete and 
reduce inventory, which contributes to lowering the profits. 
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Figs. 5 and 6 present that the channel cross-elasticity coefficient has a positive impact on the optimal price and profit of each 
game player, which means that the price of a product of a certain channel becomes sensitive to the price of another channel in the 
dual-channel supply chain, and then, the demand is affected by product price fluctuations. 

 

Fig. 5. The relationship between channel cross-elasticity coefficient and prices under decentralized decision-making. 

 

Fig. 6. The relationship between channel cross-elasticity coefficient and profits under decentralized decision-making. 

4.2. Parameter Sensitivity Analysis of Centralized Decision-Making  

In centralized decision-making, manufacturers and retailers are regarded altogether to maximize the overall profit of the supply 
chain. At this time, the free-riding behavior in the online channel provides the retail channel subsidies to strengthen the overall 
cooperation. Otherwise, it causes the collapse of cooperation. Then, the price of the product of the two channels falls as shown in 
Figure 7. The free-riding behavior in the online channel damages the profit of the retail channel to increase its profit as shown in 
Figure 8. Therefore, the free-riding behavior seriously harms the overall profit of the supply chain as shown in Figure 9. 

 

Fig. 7. The relationship between free-riding behavior coefficient and prices under centralized decision-making. 
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Fig. 8. The relationship between free-riding behavior coefficient and profits under centralized decision-making. 

4.3. Comparison between Classical Game and Quantum Game 

Under decentralized decision-making, the comparison of the optimal total profit between the quantum and the classical game 
in the overall supply chain is shown in Figure 10. The 3D comparison shows that the optimal profit of the overall supply chain of 
the quantum game is better than that of the classic game as the channel cross-elasticity coefficient 𝛼𝛼 and free-riding behavior 
coefficient 𝜆𝜆 increase. 

  

Fig. 9. The free-riding behavior harms the overall profit of the supply chain.  

  

Fig. 10. 3D comparison between the classical game and quantum game. 

5. Conclusions  

We explore the influences of free-riding behavior of the online direct sales channel on the dual-channel supply chain and 
compare the result of the classical and the quantum game. The free-riding behavior in the online channel increases its profit by 
damaging the profit of the retail channel, so the free-riding behavior seriously harms the overall profit of the supply chain. Then, 
this causes the collapse of overall supply chain cooperation. From the perspective of quantum games, the pricing of the quantum 



13 

IJBSI 2021, Vol 1, Issue 1, 3–17, https://doi.org/10.35745/ijbsi2021v01.01.0002 
 

game decision is the same as that of classical game theory when quantum entanglement 𝛾𝛾 = 0 under decentralized decision-making. 
When quantum entanglement 𝛾𝛾 changes, quantum game pricing also changes accordingly. When the quantum entanglement 𝛾𝛾 >
0, the optimal price and profit of quantum games are higher than those of classical games. When 𝛾𝛾 → ∞, the optimal price of the 
quantum game finally remains in convergence as the degree of quantum entanglement between the retailer and the manufacturer 
increases. Therefore, the quantum game theory provides more diverse and optimized decision-making methods than the classical 
game theory. 

Funding: “This research did not receive external funding” or “This research was funded by NAME OF FUNDER, Grant No. XXX”. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix 1. The Proof of Theorem 1. 

Proof. Substituting Equations (19) and (20) into Equations (3) and (4) obtains the profit functions of retailer and manufacturer. 
According to the first derivative condition of the profit functions 

𝜕𝜕𝜋𝜋𝑗𝑗
𝜕𝜕𝑥𝑥𝑗𝑗

= 0，𝑗𝑗 = 0, 1, the followings are proposed. 

𝑒𝑒0(−2𝑏𝑏0 𝑐𝑐𝑐𝑐𝑠𝑠ℎ
2 𝛾𝛾 + 2𝛼𝛼 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾) + 𝑒𝑒1(−2𝑏𝑏0 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 + 𝛼𝛼(𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 + 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾)) 

= −[𝑎𝑎0 + (1 − 𝜆𝜆)𝑠𝑠] 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 + 𝜔𝜔 (−𝑏𝑏0 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 + 𝛼𝛼 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾),
      

(A1) 

𝑒𝑒0(−2𝑏𝑏1 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 + 𝛼𝛼(𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 + 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾)) + 𝑒𝑒1(−2𝑏𝑏1 𝑐𝑐𝑐𝑐𝑠𝑠ℎ
2 𝛾𝛾 + 2𝛼𝛼 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾) 

= −(𝑎𝑎1 + 𝜆𝜆𝑠𝑠) 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 + (𝑏𝑏0(𝜔𝜔 − 𝑐𝑐) + 𝑐𝑐𝛼𝛼) 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 − (𝑏𝑏1𝑐𝑐 + 𝛼𝛼(𝜔𝜔 − 𝑐𝑐)) 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾.
  

(A2) 

The second derivative condition of the profit functions are 

𝜕𝜕2𝜋𝜋𝑗𝑗
𝜕𝜕𝑥𝑥𝑗𝑗

2 = (−2𝑏𝑏𝑗𝑗 𝑐𝑐𝑐𝑐𝑠𝑠ℎ
2 𝛾𝛾 + 2𝛼𝛼 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾) = − (𝑏𝑏𝑗𝑗−𝛼𝛼)𝑒𝑒2𝛾𝛾+(𝑏𝑏𝑗𝑗+𝛼𝛼)𝑒𝑒−2𝛾𝛾+2

2
< 0,    (A3)

 

where 𝑗𝑗 = 0, 1. Thus, this quantum game model suggests the optimal prices. 

The first derivative condition can be written by 𝐵𝐵𝑋𝑋 = 𝛽𝛽, i.e., �𝐵𝐵11 𝐵𝐵12
𝐵𝐵21 𝐵𝐵22

� �
𝑒𝑒0
𝑒𝑒1� = �𝛽𝛽1𝛽𝛽2

�, where 

𝐵𝐵11 = 2𝑏𝑏0 𝑐𝑐𝑐𝑐𝑠𝑠ℎ
2 𝛾𝛾 − 2𝛼𝛼 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾, 

𝐵𝐵12 = 2𝑏𝑏0 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 − 𝛼𝛼(𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 + 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾), 
𝐵𝐵21 = 2𝑏𝑏1 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 − 𝛼𝛼(𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 + 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾), 
𝐵𝐵22 = 2𝑏𝑏1 𝑐𝑐𝑐𝑐𝑠𝑠ℎ

2 𝛾𝛾 − 2𝛼𝛼 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾, 
𝛽𝛽1 = [𝑎𝑎0 + (1 − 𝜆𝜆)𝑠𝑠] 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 − 𝜔𝜔 (−𝑏𝑏0 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 + 𝛼𝛼 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾),   

𝛽𝛽2 = (𝑎𝑎1 + 𝜆𝜆𝑠𝑠) 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 − (𝑏𝑏0(𝜔𝜔 − 𝑐𝑐) + 𝑐𝑐𝛼𝛼) 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 + (𝑏𝑏1𝑐𝑐 + 𝛼𝛼(𝜔𝜔 − 𝑐𝑐)) 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾. 

Since 𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 − 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾 = 1 and 𝑏𝑏0, 𝑏𝑏1 > 1 > 𝛼𝛼,  

   |𝐵𝐵| = 4𝑏𝑏0𝑏𝑏1 𝑐𝑐𝑐𝑐𝑠𝑠ℎ
2 𝛾𝛾 (𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 − 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾) − 2𝛼𝛼(𝑏𝑏0 + 𝑏𝑏1) 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 (𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 − 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾)

 

             
−𝛼𝛼2(𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 − 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾)2 

= 4𝑏𝑏0𝑏𝑏1 𝑐𝑐𝑐𝑐𝑠𝑠ℎ
2 𝛾𝛾 − 2𝛼𝛼(𝑏𝑏0 + 𝑏𝑏1) 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 − 𝛼𝛼2 

= �𝑏𝑏0𝑏𝑏1 −
𝛼𝛼(𝑏𝑏0+𝑏𝑏1)

2
�  𝑒𝑒2𝛾𝛾 + �𝑏𝑏0𝑏𝑏1 + 𝛼𝛼(𝑏𝑏0+𝑏𝑏1)

2
�  𝑒𝑒−2𝛾𝛾 + (2𝑏𝑏0𝑏𝑏1 − 𝛼𝛼2) > 0.           (A4) 
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Applying Cramer’s Rule, we can obtain the optimal strategies 

𝑒𝑒0∗ =
1

|𝐵𝐵| �
[2𝑏𝑏1(𝑎𝑎0 + (1 − 𝜆𝜆)𝑠𝑠 + 𝑏𝑏0𝜔𝜔) + (𝑎𝑎1 + 𝜆𝜆𝑠𝑠 + 𝑏𝑏1𝑐𝑐)𝛼𝛼 + (𝜔𝜔 − 𝑐𝑐)𝛼𝛼2] 𝑐𝑐𝑐𝑐𝑠𝑠ℎ3 𝛾𝛾 

−[2𝑏𝑏0(𝑎𝑎1 + 𝜆𝜆𝑠𝑠 + 𝑏𝑏1𝑐𝑐) + (2𝑎𝑎0 + 2(1 − 𝜆𝜆)𝑠𝑠 + 2𝑏𝑏1𝜔𝜔 + 5𝑏𝑏0𝜔𝜔 − 3𝑏𝑏0𝑐𝑐)𝛼𝛼 + 𝑐𝑐𝛼𝛼2] 𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 

+[2𝑏𝑏02(𝜔𝜔 − 𝑐𝑐) + (𝑎𝑎1 + 𝜆𝜆𝑠𝑠 + 2𝑏𝑏0𝑐𝑐 + 𝑏𝑏1𝑐𝑐)𝛼𝛼 + (3𝜔𝜔 − 𝑐𝑐)𝛼𝛼2] 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾 

 −[𝑏𝑏0(𝜔𝜔 − 𝑐𝑐)𝛼𝛼 + 𝑐𝑐𝛼𝛼2] 𝑠𝑠𝑖𝑖𝑠𝑠ℎ3 𝛾𝛾�,
                       

                     (A5) 

𝑒𝑒1∗ =
1

|𝐵𝐵| �
[2𝑏𝑏0(𝑎𝑎1 + 𝜆𝜆𝑠𝑠 + 𝑏𝑏1𝑐𝑐) + (𝑎𝑎0 + (1 − 𝜆𝜆)𝑠𝑠 − 2𝑏𝑏0𝑐𝑐 + 3𝑏𝑏0𝜔𝜔)𝛼𝛼] 𝑐𝑐𝑐𝑐𝑠𝑠ℎ3 𝛾𝛾 − 𝜔𝜔𝛼𝛼2 𝑠𝑠𝑖𝑖𝑠𝑠ℎ3 𝛾𝛾 

−[2𝑏𝑏02(𝜔𝜔 − 𝑐𝑐) + 2𝑏𝑏0𝑏𝑏1𝜔𝜔 + 2𝑏𝑏1𝑎𝑎0 + 2𝑏𝑏1(1 − 𝜆𝜆)𝑠𝑠 

+2(𝑎𝑎1 + 𝜆𝜆𝑠𝑠 + 𝑏𝑏1𝑐𝑐 + 𝑏𝑏0𝑐𝑐)𝛼𝛼 + (3𝜔𝜔 − 2𝑐𝑐)𝛼𝛼2)] 𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 
+[(𝑎𝑎0 + (1 − 𝜆𝜆)𝑠𝑠 + 3𝑏𝑏0𝜔𝜔 − 2𝑏𝑏0𝑐𝑐 + 2𝑏𝑏1𝜔𝜔)𝛼𝛼 + 2𝑐𝑐𝛼𝛼2] 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾�.

        
          (A6) 

Therefore, the optimal strategic solutions 𝑒𝑒0∗ and 𝑒𝑒1∗ of a quantum game enable each game player to have the greatest profit. 
Substituting the optimal strategic solutions 𝑒𝑒0∗ and 𝑒𝑒1∗, into Equations (17) and (18), the optimal prices of each game player in the 
quantum game is obtained as follows. 

𝑝𝑝0∗ =
1

|𝐵𝐵| �
[2𝑏𝑏1(𝑎𝑎0 + (1 − 𝜆𝜆)𝑠𝑠 + 𝑏𝑏0𝜔𝜔) + (𝑎𝑎1 + 𝜆𝜆𝑠𝑠 + 𝑏𝑏1𝑐𝑐)𝛼𝛼 + (𝜔𝜔 − 𝑐𝑐)𝛼𝛼2] 𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 �𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 − 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾� 

+[(𝑏𝑏0𝑐𝑐 − 2𝑏𝑏0𝜔𝜔 − 2𝑏𝑏1𝜔𝜔 − 𝑎𝑎0 − (1 − 𝜆𝜆)𝑠𝑠)𝛼𝛼 − 𝑐𝑐𝛼𝛼2] 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 �𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 − 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾� 
+𝜔𝜔𝛼𝛼2 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾 �𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 − 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾��,

                                                (A7) 

𝑝𝑝1∗ =
1

|𝐵𝐵| �
[2𝑏𝑏0(𝑎𝑎1 + 𝜆𝜆𝑠𝑠 + 𝑏𝑏1𝑐𝑐) + (𝑎𝑎0 + (1 − 𝜆𝜆)𝑠𝑠 − 2𝑏𝑏0𝑐𝑐 + 3𝑏𝑏0𝜔𝜔)𝛼𝛼] 𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 �𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 − 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾� 

−[2𝑏𝑏02(𝜔𝜔 − 𝑐𝑐) + (𝑎𝑎1 + 𝜆𝜆𝑠𝑠 + 2𝑏𝑏0𝑐𝑐 + 𝑏𝑏1𝑐𝑐)𝛼𝛼 + (2𝜔𝜔 − 𝑐𝑐)𝛼𝛼2)] 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 �𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 − 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾� 
+[𝑏𝑏0(𝜔𝜔 − 𝑐𝑐)𝛼𝛼 + 𝑐𝑐𝛼𝛼2] 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾 �𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 − 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾� �.                                  

(A8) 

Using 𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 − 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾 = 1, the optimal prices can be obtained as (21) and (22). 

𝑝𝑝0∗ =
1

|𝐵𝐵| �
[2𝑏𝑏1(𝑎𝑎0 + (1 − 𝜆𝜆)𝑠𝑠 + 𝑏𝑏0𝜔𝜔) + (𝑎𝑎1 + 𝜆𝜆𝑠𝑠 + 𝑏𝑏1𝑐𝑐)𝛼𝛼 + (𝜔𝜔 − 𝑐𝑐)𝛼𝛼2] 𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 

+[(𝑏𝑏0𝑐𝑐 − 2𝑏𝑏0𝜔𝜔 − 2𝑏𝑏1𝜔𝜔 − 𝑎𝑎0 − (1 − 𝜆𝜆)𝑠𝑠)𝛼𝛼 − 𝑐𝑐𝛼𝛼2] 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾+𝜔𝜔𝛼𝛼2 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾�,             (A9) 

𝑝𝑝1∗ =
1

|𝐵𝐵| �
[2𝑏𝑏0(𝑎𝑎1 + 𝜆𝜆𝑠𝑠 + 𝑏𝑏1𝑐𝑐) + (𝑎𝑎0 + (1 − 𝜆𝜆)𝑠𝑠 − 2𝑏𝑏0𝑐𝑐 + 3𝑏𝑏0𝜔𝜔)𝛼𝛼] 𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 

−[2𝑏𝑏02(𝜔𝜔 − 𝑐𝑐) + (𝑎𝑎1 + 𝜆𝜆𝑠𝑠 + 2𝑏𝑏0𝑐𝑐 + 𝑏𝑏1𝑐𝑐)𝛼𝛼 + (2𝜔𝜔 − 𝑐𝑐)𝛼𝛼2)] 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 

+[𝒃𝒃𝟎𝟎(𝝎𝝎− 𝒄𝒄)𝜶𝜶 + 𝒄𝒄𝜶𝜶𝟐𝟐] 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝟐𝟐 𝜸𝜸}.                                                 (A10) 
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Appendix 2. The Proof of Theorem 1. 

Proof. Substituting Equations (17), (18), (19) and (20) of the relationship between quantum strategies and prices into equation (5), 
we can get the overall supply chain profit function. According to the first derivative condition of the profit function 𝜕𝜕𝜋𝜋𝑠𝑠𝑠𝑠

𝜕𝜕𝑥𝑥𝑗𝑗
= 0，𝑗𝑗 =

0, 1, we have 

𝑒𝑒0(−2𝑏𝑏0 𝑐𝑐𝑐𝑐𝑠𝑠ℎ
2 𝛾𝛾 + 4𝛼𝛼 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 − 2𝑏𝑏1 𝑠𝑠𝑖𝑖𝑠𝑠ℎ

2 𝛾𝛾) 
+𝑒𝑒1(2𝛼𝛼 𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 − 2(𝑏𝑏0 + 𝑏𝑏1) 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 + 2𝛼𝛼 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾) 

= −(𝑎𝑎0 + (1 − 𝜆𝜆)𝑠𝑠 + 𝑐𝑐(𝑏𝑏0 − 𝛼𝛼)) 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 − (𝑎𝑎1 + 𝜆𝜆𝑠𝑠 + 𝑐𝑐(𝑏𝑏1 − 𝛼𝛼)) 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾,
 

   (A11) 
𝑒𝑒0(2𝛼𝛼 𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 − 2(𝑏𝑏0 + 𝑏𝑏1) 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 + 2𝛼𝛼 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾) 

    +𝑒𝑒1(−2𝑏𝑏1 𝑐𝑐𝑐𝑐𝑠𝑠ℎ
2 𝛾𝛾 + 4𝛼𝛼 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 − 2𝑏𝑏0 𝑠𝑠𝑖𝑖𝑠𝑠ℎ

2 𝛾𝛾) 

       
= −(𝑎𝑎0 + (1 − 𝜆𝜆)𝑠𝑠 + 𝑐𝑐(𝑏𝑏0 − 𝛼𝛼)) 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 − (𝑎𝑎1 + 𝜆𝜆𝑠𝑠 + 𝑐𝑐(𝑏𝑏1 − 𝛼𝛼)) 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾.

 
   (A12) 

The first derivative condition can be written by 𝐵𝐵�𝑋𝑋 = �̂�𝛽, i.e., �𝐵𝐵
�11 𝐵𝐵�12
𝐵𝐵�21 𝐵𝐵�22

� �
𝑒𝑒0
𝑒𝑒1� = ��̂�𝛽1

�̂�𝛽2
�, where 

𝐵𝐵�11 = 2𝑏𝑏0 𝑐𝑐𝑐𝑐𝑠𝑠ℎ
2 𝛾𝛾 − 4𝛼𝛼 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 + 2𝑏𝑏1 𝑠𝑠𝑖𝑖𝑠𝑠ℎ

2 𝛾𝛾, 
𝐵𝐵�12 = −2𝛼𝛼 𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 + 2(𝑏𝑏0 + 𝑏𝑏1) 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 − 2𝛼𝛼 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾, 
𝐵𝐵�21 = −2𝛼𝛼 𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 + 2(𝑏𝑏0 + 𝑏𝑏1) 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 − 2𝛼𝛼 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾, 

𝐵𝐵�22 = 2𝑏𝑏1 𝑐𝑐𝑐𝑐𝑠𝑠ℎ
2 𝛾𝛾 − 4𝛼𝛼 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 + 2𝑏𝑏0 𝑠𝑠𝑖𝑖𝑠𝑠ℎ

2 𝛾𝛾, 

�̂�𝛽1 = (𝑎𝑎0 + (1 − 𝜆𝜆)𝑠𝑠 + 𝑐𝑐(𝑏𝑏0 − 𝛼𝛼)) 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 + (𝑎𝑎1 + 𝜆𝜆𝑠𝑠 + 𝑐𝑐(𝑏𝑏1 − 𝛼𝛼)) 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾,   

�̂�𝛽2 = (𝑎𝑎0 + (1 − 𝜆𝜆)𝑠𝑠 + 𝑐𝑐(𝑏𝑏0 − 𝛼𝛼)) 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 + (𝑎𝑎1 + 𝜆𝜆𝑠𝑠 + 𝑐𝑐(𝑏𝑏1 − 𝛼𝛼)) 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾. 

Since 𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 − 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾 = 1, we have  

� 𝐵𝐵�  � = (4𝑏𝑏0𝑏𝑏1 − 4𝛼𝛼2)(𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 − 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾) = 4𝑏𝑏0𝑏𝑏1 − 4𝛼𝛼2 > 0.             (A13) 

From the second derivative condition, we have the Hessian matrix 𝐻𝐻 = �𝐻𝐻11 𝐻𝐻12
𝐻𝐻21 𝐻𝐻22

�, where 

𝐻𝐻11 = −2𝑏𝑏0 𝑐𝑐𝑐𝑐𝑠𝑠ℎ
2 𝛾𝛾 + 4𝛼𝛼 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 − 2𝑏𝑏1 𝑠𝑠𝑖𝑖𝑠𝑠ℎ

2 𝛾𝛾, 
𝐻𝐻12 = 2𝛼𝛼 𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 − 2(𝑏𝑏0 + 𝑏𝑏1) 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 + 2𝛼𝛼 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾, 

𝐻𝐻21 = 2𝛼𝛼 𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 − 2(𝑏𝑏0 + 𝑏𝑏1) 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 + 2𝛼𝛼 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾, 

𝐻𝐻22 = −2𝑏𝑏1 𝑐𝑐𝑐𝑐𝑠𝑠ℎ
2 𝛾𝛾 + 4𝛼𝛼 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 − 2𝑏𝑏0 𝑠𝑠𝑖𝑖𝑠𝑠ℎ

2 𝛾𝛾. 

When 𝑏𝑏 = 𝑚𝑚𝑖𝑖𝑠𝑠{ 𝑏𝑏0, 𝑏𝑏1 }, since 𝑏𝑏0, 𝑏𝑏1 > 1 > 𝛼𝛼,  

𝐻𝐻11 ≤ −2𝑏𝑏�𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 + 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾� + 4𝛼𝛼 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 = (−𝑏𝑏 + 𝛼𝛼)𝑒𝑒2𝛾𝛾 − (𝑏𝑏 + 𝛼𝛼)𝑒𝑒−2𝛾𝛾 < 0 (A14)
 

|𝐻𝐻| = 4(𝑏𝑏0𝑏𝑏1 − 𝛼𝛼2)(𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 − 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾) > 0.                        (A15) 
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The Hessian matrix is negatively definite, so the overall supply chain profit function has the maximum value. With Cramer’s 
Rule, we obtain the optimal strategies as follows. 

𝑒𝑒0𝑐𝑐∗ =
1
� 𝐵𝐵�  �

�[2𝑏𝑏1(𝑎𝑎0 + (1 − 𝜆𝜆)𝑠𝑠 + 𝑏𝑏0𝑐𝑐) + 2(𝑎𝑎1 + 𝜆𝜆𝑠𝑠)𝛼𝛼 − 2𝑐𝑐𝛼𝛼2] 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 (𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 − 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾) 

+[−2𝑏𝑏0(𝑎𝑎1 + 𝜆𝜆𝑠𝑠 + 𝑏𝑏1𝑐𝑐) − 2(𝑎𝑎0 + (1 − 𝜆𝜆)𝑠𝑠)𝛼𝛼 + 2𝑐𝑐𝛼𝛼2)] 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 (𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 − 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾)�  

=
1
� 𝐵𝐵�  �

{[2𝑏𝑏1(𝑎𝑎0 + (1 − 𝜆𝜆)𝑠𝑠 + 𝑏𝑏0𝑐𝑐) + 2(𝑎𝑎1 + 𝜆𝜆𝑠𝑠)𝛼𝛼 − 2𝑐𝑐𝛼𝛼2] 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾  

 
+[−2𝑏𝑏0(𝑎𝑎1 + 𝜆𝜆𝑠𝑠 + 𝑏𝑏1𝑐𝑐) − 2(𝑎𝑎0 + (1 − 𝜆𝜆)𝑠𝑠)𝛼𝛼 + 2𝑐𝑐𝛼𝛼2] 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾},                (A16) 

𝑒𝑒1𝑐𝑐∗ =
1
� 𝐵𝐵�  �

� [2𝑏𝑏0(𝑎𝑎1 + 𝜆𝜆𝑠𝑠 + 𝑏𝑏1𝑐𝑐) + 2(𝑎𝑎0 + (1 − 𝜆𝜆)𝑠𝑠)𝛼𝛼 − 2𝑐𝑐𝛼𝛼2] 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾 (𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 − 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾) 

+[−2𝑏𝑏1(𝑎𝑎0 + (1 − 𝜆𝜆)𝑠𝑠 + 𝑏𝑏0𝑐𝑐) − 2(𝑎𝑎1 + 𝜆𝜆𝑠𝑠)𝛼𝛼 + 2𝑐𝑐𝛼𝛼2] 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾 (𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 − 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾) �  

= 1
| 𝐵𝐵�  |

{[2𝑏𝑏0(𝑎𝑎1 + 𝜆𝜆𝑠𝑠 + 𝑏𝑏1𝑐𝑐) + 2(𝑎𝑎0 + (1 − 𝜆𝜆)𝑠𝑠)𝛼𝛼 − 2𝑐𝑐𝛼𝛼2] 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝛾𝛾  

 +[−2𝑏𝑏1(𝑎𝑎0 + (1 − 𝜆𝜆)𝑠𝑠 + 𝑏𝑏0𝑐𝑐) − 2(𝑎𝑎1 + 𝜆𝜆𝑠𝑠)𝛼𝛼 + 2𝑐𝑐𝛼𝛼2] 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝛾𝛾}.                (A17) 

Substituting Equations (A7) and (A8) into equations (17) and (18) leads to the follows. 

𝑝𝑝0𝑐𝑐∗ =
1

|𝐵𝐵| � 
[2𝑏𝑏1(𝑎𝑎0 + (1 − 𝜆𝜆)𝑠𝑠 + 𝑏𝑏0𝑐𝑐) + 2(𝑎𝑎1 + 𝜆𝜆𝑠𝑠)𝛼𝛼 − 2𝑐𝑐𝛼𝛼2] �𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 − 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾� 

= 𝑏𝑏1(𝑎𝑎0+(1−𝜆𝜆)𝑠𝑠+𝑏𝑏0𝑐𝑐)+𝛼𝛼(𝑎𝑎1+𝜆𝜆𝑠𝑠−𝑐𝑐𝛼𝛼)
2(𝑏𝑏0𝑏𝑏1−𝛼𝛼2)

= �̄�𝑝0𝑐𝑐∗                                     (A18) 

𝑝𝑝1𝑐𝑐∗ =
1

|𝐵𝐵| � 
[2𝑏𝑏0(𝑎𝑎1 + 𝜆𝜆𝑠𝑠 + 𝑏𝑏1𝑐𝑐) + 2(𝑎𝑎0 + (1 − 𝜆𝜆)𝑠𝑠)𝛼𝛼 − 2𝑐𝑐𝛼𝛼2] �𝑐𝑐𝑐𝑐𝑠𝑠ℎ2 𝛾𝛾 − 𝑠𝑠𝑖𝑖𝑠𝑠ℎ2 𝛾𝛾� 

= 𝑏𝑏0(𝑎𝑎1+𝜆𝜆𝑠𝑠+𝑏𝑏1𝑐𝑐)+𝛼𝛼(𝑎𝑎0+(1−𝜆𝜆)𝑠𝑠−𝑐𝑐𝛼𝛼)
2(𝑏𝑏0𝑏𝑏1−𝛼𝛼2)

= �̄�𝑝1𝑐𝑐∗.                             (A19)  
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