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Abstract: Biological signals, such as EEG and ECG, generate complex fluctuations in correspondence with the underlying system 
dynamics. In this study, we propose a dissimilarity quantification, which is an improvement of information-based similarity for 
capturing the features of underlying dynamics from positivity or negativity trials in the neurofeedback training of chronic stroke 
patients. Simulated Gaussian white and pink noises are used to evaluate the validity of this measure by different embedding 
dimensions, time delays, and data lengths. Then, the method is applied to slow cortical potentials of chronic stroke patients. The 
results imply that the proposed dissimilarity measure characterizes the unique dynamical patterns of SCP signals. The dissimilarity 
measure is capable of capturing the underlying dynamics of SCPs that belong to positivity or negativity trials. Besides, as the session 
progressed, the dissimilarity showed an increasing trend. 
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1. Introduction 

Non-invasive electroencephalographic (EEG) based brain-computer interface (BCI) is proven to be potential for supporting 
neuronal plasticity of sub-acute or chronic stroke patients [1‒3]. A number of randomized controlled trials have shown positive 
effects on neurofeedback training programs [4,5]. Yet, there are still important problems that remain unsolved in the implementation 
of BCI-based rehabilitation in clinical practice. This requires interdisciplinary solutions.  

From the methods of EEG neurofeedback, slow cortical potential (SCP) is a classical one. SCP is a cortical polarization 
measurement from any position on the scalp (preferably the frontocentral region) with a direct current amplifier for more than  
0.5‒10.0 s. The training of SCP is aiming of modulating specific event-related potentials, in which negative potentials represent an 
increase in the excitation of underlying neuronal tissue, and positive potentials indicate the level of local cortical arousal and 
attention. The purpose of such training is to improve the self-regulation capabilities of SCP to improve the regulation ability of 
cortical excitability to a certain extent [6]. 

The first successful application of SCP in BCI communication is for locked-in syndrome patients to select letters on a computer 
screen [7]. From then on, a series of researches have shown that SCP can be used for controlling external devices [8‒10]. For 
example, the patient in the locked-in state was trained to control his SCP and experienced a brainstem stroke [11]. In another study, 
SCP with negative polarity was successfully used to detect the preparation of lower limb movement [12]. SCP is also an effective 
and standardized neurofeedback training method to solve the behavioral and neurophysiological defects of ADHD [13]. Besides, 
SCP neurofeedback training has also been selected as a test method for chronic stroke patients [14]. 

For the analysis of SCP signals in neurofeedback training, regulating the amplitude changes in SCP is the most intuitive way 
[15]. Besides, methods based on neural networks have the potential for brain activity classification, too. Altan et al. proposed to use 
a deep belief network for assessing the clinical usefulness of SCP training in stroke patients in this respect [14]. The statistical 
methods were combined with the EEG power spectrum and applied to BCI studies in stroke rehabilitation by translating brain signals 
into predetermined movements of paralyzed limbs [16]. However, the real EEGs are nonstationary, nonlinear, and usually carry 
noises. Studies have demonstrated that signals such as EEGs generate complex fluctuations which are in correspond with the 
underlying system dynamics [17‒20]. Therefore, feature extraction algorithms of SCPs for neurofeedback training are in pressing 
demand, especially in the rapid development of BCI. 

Information-based similarity (IBS) is a novel method originally proposed for human linguistic style classification based on 
word order frequency statistics and phylogenetic tree construction [21]. After identifying Shakespeare's works [21], IBS has been 
successfully applied in detecting the repetition of some basic patterns embedded in human heart rate time series [22‒24], human 
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DNA database [24], blood pressure signals [25], and laser speckle contrast imaging [26]. For these types of signals, the word rank 
is obtained by mapping the original sequence to a binary sequence, where the increase and decrease of the raw data are referred to 
as 1 and 0, respectively. However, one essential nature of brain activities is fast oscillatory and multi-sourcing interactions. Selecting 
a symbolic representation of an ordinal pattern instead of the binary sequence is more appropriate for SCP analysis in BCI studies. 
In this work, we present an ordinal dissimilarity that is based on the IBS method and apply it in the neurofeedback training from 
SCP signals in stroke. 

2. Materials and Methods 

Information-based similarity (IBS) is an algorithm for measuring the dissimilarity between two symbolic sequences [24,27], 
used for text classification [21,28]. The basic idea of this method is to quantify the differences in repetition patterns between two 
symbolic signals. In this study, the EEGs were mapped to symbolic sequences based on their corresponding ordinal patterns. 

For a given time series {xi; i = 1, 2, …, N}, state vectors Xt = {xt, xt+δ, xt+2δ, …, xt+(m-1)δ} are constructed in a m-dimensional 
space, where m is the length of each reconstructed phase space, t = 1, 2, …, N − (m − 1)δ, and δ is termed as time delay. For each 
state vector, the series is sorted in a non-decreasing order in which the indices r0, r1, …, rm−1 correspond to 

0 1 1mt r t r t rx x x
−+ + +≤ ≤ ≤L . 

The corresponding m-tuple π = (r0, r1, …, rm−1) is the symbolic representation of the state vector and is named a permutation. In this 
way, the state vector set {0, 1, …, m − 1} contains m! possible permutations.  

Applying the above procedures, the original time series {xi; i = 1, 2, …, N} can be mapped to a new symbolic series {πm, δ(t)} 
constituted of ordinal patterns πk (k = 1, …, m!), which denotes a unique pattern of fluctuations for a given time series. Fig. 1 
illustrates the mapping procedure for 3-dimensional space and time delay equals 1 from a part of the EEG sequence. For m = 3, 
there are a total of 6 (3!) possible ordinal patterns, but there exist 5 ordinal patterns in this example, so the pattern 312 did not show 
out. This phenomenon is related to the existence of forbidden ordinal patterns in the chaotic dynamics that are ordinary in several 
chaotic maps [29,30]. These forbidden ordinal patterns can also appear in EEGs corresponding to the signal length and the pattern 
dimensions [31]. Thus, the number of forbidden ordinal patterns decreases with the signal length, however, increases with the pattern 
dimension. 

 

Fig. 1. The mapping procedure for ordinal pattern m = 3 and δ = 1. 
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Therefore, the probability distribution P = {pk(πk)}k = 1,…m! denotes the odds of finding apart from a time series with a specific order 
that is a rank-frequency distribution. In this study, the forbidden ordinal patterns are discarded. 

The dissimilarity measure is developed on the assumption that the information in a signal is mainly determined by the repetitive 
ordinal patterns of the underlying dynamics. For the above permutation patterns {πm,δ(t)}, the occurrence times of each ordinal 
pattern are counted and sorted according to the relative frequency of its occurrence. In this way, the rank-frequency of each pattern 
πk (k = 1, …, m!) between two sequences mapped from two-time series may not be equal. The rank order of each ordinal pattern of 
the first symbolic sequence is plotted against its corresponding rank order of the second symbolic sequence. Thus, each point on the 
graph represents a segment pattern with its rank order in the first symbolic sequence shown on the horizontal axis, against that order 
in the second symbolic sequence on the vertical axis. The diagonal line of the identification indicates that the rank order of the two 
signals is equal. The points around the diagonal line represent the rank orders of two symbolic sequences that are close. Fig. 2(c,d) 
shows comparisons between EEGs for either two positivity trials or two negativity trials. The average deviation between the order 
points and the diagonal line is a reflection of the distance between the two symbolic sequences. The greater the distance, the less 
similarity between the two symbolic sequences (Fig. 2b, comparison between positivity and negativity trials), and, vice versa. 
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Fig. 2. (a) The plot of a positivity SCP against a negativity SCP of one subject. The detailed data description is introduced in 
section 4.1. (b) Rank order plot of the time series in (a), the zero terms are excluded. (c) Rank order plot of the SCPs for two 
positive trials; (d) Rank order plot of the SCPS for two negative trials. The black diagonal line is the case where the rank-order of 
shared patterns for both sequences is identical. The results in (b–d) are for the case m = 6, δ = 1. 

In order to quantify the similarity between the two sequences more intuitively, a dissimilarity measure is defined according to 
the rank order of ordinal patterns of two-time series as 

( )1 2 1 2
1

1, ( ) ( ) ( )
L

m k k k
k

d X X R R F
L

π π π
=

= −∑                                   (2) 

where πk presents a specific shared ordinal pattern, R1(πk) and R2(πk) are the rank order of each πk in sequences X1 and X2, respectively, 
L is the number of total shared ordinal patterns, and F(πk) is the weight. The greater the dm is, the farther away from the point from 
the diagonal line, and the less similar the two sequences are. Clearly, the absolute rank difference, |R1(πk) − R2(πk)|, represents the 
absolute distance from a scattered point to the diagonal line. By multiplying a weight function F(πk), which is defined as

[ ]1 1 2 2( ) ( ) log ( ) ( ) log ( ) /k k k k kF p p p p Zπ π π π π= − − , differentiated contributions to the overall quantification by various ordinal patterns 

have been taken into account. p1(πk) and p2(πk) in the weight function are the probability of the shared ordinal pattern πk in sequences 

X1 and X2, separately. Z is the normalization factor defined as [ ]1 1 2 21
( ) log ( ) ( ) log ( )L

k k k kk
Z p π p π p π p π

=
= − −∑ . In this way, the ordinal 

patterns with higher probabilities become more heavily weighted. The definition of Z is derived from the Shannon entropy, and the 
latter contains the idea that a specific repetitive pattern is proportional to the total amount of energy represented by the repetitive 
transitions to the corresponding microstate [24]. Such connection is important since it connects a basic concept of information theory 
to that of a dynamic system (energy of microstates). 

3. Simulation 

The Gaussian white noise and the 1/f oscillation (pink noise) are applied to examine the effectiveness of the proposed method. 
To note, the power spectral density of 1/f oscillation is inversely proportional to its frequency, which is intrinsically different from 
white noise. The three interfering factors, data length N, embedding dimension m, and time delay δ of the dissimilarity dm are 
discussed in the simulation. For each data length N, 100 realizations are executed. The dissimilarity measure dm is calculated between 
Gaussian white noise and the 1/f oscillation for each realization. 

Fig. 3(a) shows the results of the mean dissimilarity measure between Gaussian white noises and 1/f oscillation for different 
data lengths N. m equals 4, 5, and 6, and time delay δ preserves 1. As shown in the figure, the value of the distance is sensitive to 
the data length for smaller N, and stables as N grows larger. In addition, for a long enough sequence, the curve of dissimilarity from 
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m = 4 fluctuates, but with the increase of m, it becomes more stable. As mentioned before, there are m! possible ordinal patterns. 
The larger the m is, the more potential repetitive patterns can be selected for characterizing the underlying dynamics of time series. 
Furthermore, the difference between the two signals becomes significant. Thus, the standard deviations for dm at m = 6 are smaller 
than in the other two situations. On the other side, there are a total of 24 ordinal patterns at dimension 4, thus shared ordinal patterns 
may occur in certain distributions by chance.  

Fig. 3(b) shows the dissimilarity measure dm changes with different data lengths N and time delay δ. The dissimilarity dm is 
sensitive to the two parameters δ and N when N is relatively smaller. In contrast, the dm values are more stable for larger N as the 
probability distribution of ordinal patterns is more statistically characteristic. On the other side, the surface of d4(δ, N) oscillate a lot 
in comparison with that of d6(δ, N) even for a larger N. However, the d6 surface is approximately flat when N ≥ 5000 no matter what 
δ equals to. Therefore, the dimension m is chosen as 5 and 6, and time delay δ is set as 1 to decrease fluctuations of the estimates in 
the following study. 

 
Fig. 3. Dissimilarity results between Gaussian white noise and the 1/f oscillation. (a) Effect of different series lengths N on 
dissimilarity measure dm. Average over 100 realizations for each length N. Circles in the plot represents the mean values and bars 
represent the standard deviation. (b) Effect of different time delay δ on dissimilarity dm for various length N (72-720) with m = 4 
(left), N (120-3600) with m = 5 (medium), and N (720-21600) with m = 6 (right). 

4. Applications to SCP Signals in Stroke 

4.1. Data Description 

The EEG signals were recorded during eight slow cortical potentials (SCP) neurofeedback sessions in two patients with chronic 
stroke [32]. The interval between two neurofeedback sessions was about one week. The sampling frequency of the recorded EEGs 
was 256 Hz from the Cz electrode using a Nexus-10 MKII DC amplifier (Mindmedia, Herten, The Netherlands). Each 
neurofeedback session included the trials that must increase cortical positive and trials that must increase cortical negative. Each 
trial lasts 8 s (baseline: 0‒2 s, active phase: 2‒8 s). The feedback consisted of circles with their size and color indicating whether 
the subject adjusted the baseline activity successfully. The trials were judged successful if the brain activation was adjusted 
according to the requirements of the task (whether positive or negative), and the participants were successfully instructed. All EEGs 
were referenced to the linked mastoids and low pass filtered at 10 Hz. In Sessions 1‒3, 250 trials were conducted for the positive as 
well as the negative trials. In sessions 4‒8, 375 trials were conducted for negativity, and 125 trials for positivity. A total number of 
8000 trials (500 trials for each session and each patient) with 8 s lengths were segmented. 
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4.2 Results and Discussion 

The ordinal pattern-based IBS was conducted during the SCP neurofeedback sessions. To explore the effectiveness of 
neurofeedback training quantified by the proposed method on stroke patients, we randomly selected 50 positivity trials and 50 
negativity trials from the 500 trials from each session each subject to discuss the effect of session, embed dimension m and time 
delay δ on the dissimilarity measure dm. Specifically, dm is calculated between two positivity trials, two negativity trials, or a 
positivity trial compared with a negativity trial, respectively.  

Fig. 4 shows the averaged dissimilarity measure dm for the first subject. In general, the three surfaces in the lower panel look 
more similar and have larger values than those in the upper panel. As mentioned before, there are m! possible ordinal patterns in 
total, but certain patterns do not appear for larger dimensions. That is to say, with the increasing of dimension, the number of 
forbidden patterns is also increasing for signals with limited length. Therefore, the surfaces in the lower panel are not much different 
as shown in Fig. 5. As the session progresses, the averaged dissimilarity measure dm for the first subject increases especially for a 
larger time delay. Besides, the surface of two negative trials (N&N, when m = 5, Fig. 4) was statistically lower than the other two 
surfaces. This indicates that neurofeedback training is effective for the first subject. However, the dissimilarity progress is not 
obvious for the second subject, although the dm value increases with session progress for time delay δ = 1. However, the dissimilarity 
progress is not obvious for the second subject, although the dm value is also increasing with the session progress for time delay δ = 
1 (Fig. 5). 

 
Fig. 4. Averaged dissimilarity dm surface fluctuates with the session progress and time delay δ changing from 1 to 8 for the first 
subject. The dimension m is set to 5 in the upper panel, and 6 in the lower panel. The left column is the average of 1225 
dissimilarities calculated between every two positive trials from the selected 50 positivity trials. Similarly, the middle column is 
the average of 1225 dissimilarities calculated between every two negative trials from the selected 50 negativity trials. For 
consistency, 35 positive trials are randomly picked out from the 50 positivity trials and compared to 35 negative trials randomly 
selected from the 50 negativity trials, and the averaged dm is depicted in the right column. 

In addition, with the increasing time delay δ, the averaged dissimilarity measure dm decreases at first and then increases 
monotonically for both subjects. For a detailed observation of dissimilarity measures on session progress under different time delays, 
the plots of dm with the session under different time delays are shown in Fig. 6. For δ = 1, the dm plot is flat, but the value is large, 
and it is difficult to distinguish the three curves. With the increase of δ, the difference between curves gets bigger and bigger, and 
they are increasing with the session progress. This reflects the positive effect of neurofeedback training on this stroke patient. 
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Fig. 5. Effect of different time delay δ on dissimilarity dm for different sessions for the second subject. The experimental design is 
the same as Fig. 4. 

 
Fig. 6. The effect of session progress on dissimilarity measure dm for the first subject, the time delay δ changes from 1 to 8, and 
the plots are averaged results as is shown in Fig. 4.  

5. Conclusions 

In this study, a method of quantifying the degree of dissimilarity between two signals was introduced. After being verified by 
noise signals, the method was applied to neurofeedback training for chronic stroke patients. The method assumes that the information 
content carried in time series is characterized by repetitive ordinal patterns. In the influence of ordinal patterns and forbidden patterns, 
we discarded the forbidden patterns in the calculation of dissimilarity. The effect of different parameters on the defined dissimilarity 
measure was validated by Gaussian white noise and 1/f oscillation. The result shows that the data length sensitively affects the 
dissimilarity value, thus enough length signal needs to be considered for stable results. In the application of slow cortical potential 
training for chronic stroke patients, we find that the dynamical patterns of SCP are characterized by the signal ordinal patterns. The 
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dissimilarity measure dm is capable of capturing the underlying dynamics of SCPs that belong to positivity or negativity trials. This 
neurofeedback training is effective for chronic stroke patients. In the future, more subjects need to be recruited to further verify the 
effectiveness of this dissimilarity measure in the neurofeedback training of chronic stroke patients. 
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