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Abstract: Ever since the first discovery of human brain waves in 1929, brain rhythm has been attracting interest in the field of 
neuroscience. The integration of distributed brain functions similar to small-scale circuits for the same task in a larger scale network 
which oscillations facilitate offers a means to study the brain at work. Importantly, changes in synchronized brain oscillations may 
reveal important aspects of pathophysiology. For example, excess beta rhythms are characteristic of Parkinson's brain. However, 
various spatial distributions and frequencies of neuronal oscillations and nonlinear and complicated neuronal processes make it 
difficult to understand neuronal messages, and it is needed to find an appropriate model. Thus, we present a brief review of 
techniques used in characterizing frequency-related local fluctuations and interactions between neuronal assemblies by measuring 
electroencephalography (EEG) or MEG. Specifically, we focus on the objectives of these methods, including: (1) inferential versus 
non-inferential, (2) linear versus nonlinear, (3) uni-versus multi-variate, and (4) power modulation versus phase-synchrony. Three 
practical issues – that are typically confronted when applying these methods – are also discussed. This article aims to provide readers 
who are not familiar with current methods an accessible overview – that may help the neuroscientists to interpret the similar findings 
of this study. 
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1. Introduction 

Oscillatory brain activities and their functional roles 
Frequency contents such as spectrum define electromagnetic waves, which are applied to brain rhythms. Brain rhythms are 

grouped into θ, α, β, γ, and high γ bands according to the frequency such as 4‒8, 8‒14, 15‒30, 30‒80, and 80‒150 Hz, respectively. 
The oscillatory feature has been observed in human brains in different scales from a unit-based process by using a local to a larger 
scale measures of EEG or MEG [1‒4]. According to regions in a brain or an underlying task, brain rhythms have different frequency 
contents. For example, mu (10‒ and 20‒ Hz) rhythms are observed in sensorimotor regions during rest [5], while occipital alpha 
rhythms (‒10 Hz) with closed eyes [6]. As oscillations integrate segregated and engaged brain areas as small-scale circuits and 
large-scale networks, neuroscientists have been interested in brain rhythms [7‒11]. For example, the modulation of oscillations at 
>10, >20, and >30 Hz are associated with M1 of the primary motor cortex, M2 of the supplementary motor area (SMA), and PM of 
the premotor cortex, respectively, for the control of movement [12‒15]. It reflects moving mechanisms such as speed and movement 
types [3, 16‒23]. In particular, mu rhythms are read during observation of actions by playing a certain role in the ‘mirror neuron’ 
system [24‒25]. In diseases, oscillatory activity may reveal the pathological modulation of specific frequencies affecting particular 
neuronal systems. Patients with Parkinson’s disease show a simultaneity at 4‒6 Hz in the contralateral primary motor cortex and 
forearm muscles, which contributes to the resting tremors. Their excessive synchronization at 10–35 Hz in the basal 
ganglia/subthalamic nucleus is related to bradykinesia [26]. Moving face muscles engage multiple oscillations of δ, θ, α, β, γ bands 
[27]. Face recognition changes in the frequency of 4‒45 Hz in the parietal and frontal cortices, and fusiform gyrus [28,29]. Recently, 
functional asymmetries have been found in the fusiform and occipital face area in face recognition in the connections of a core 
network [30]. 

Neuronal oscillations have various spatial distributions and frequencies, which involve brain network functions. The complex 
and nonlinear neuronal process makes it difficult to understand the nature of passing neuronal messages and functional integration. 
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Thus, an appropriate modeling method becomes self-evident. In this article, methodological issues in neural networks are reviewed 
and compared between uni-and multivariate methods for inferential and non-inferential modeling, linear and nonlinear methods, 
and power fluctuation and phase-synchronization. 

2. Measuring brain waves and network connectivity: methods 

2.1. Inferential and Non-inferential modeling 

Numerous time-series data is necessary for neuroscience provides abundant, which requires developing and validating methods 
for studying the architecture of brain functions. Generally speaking, there are two ways to study neuronal time-series modeling:  
inferential and non-inferential. Breiman stated that there are two statistical modeling methods: a stochastic data model and an 
algorithmic model [31]. A stochastic data model is referred to as the inferential method, while an algorithmic model is referred to 
as the non-inferential method. The inferential method integrates previous learning into deterministic or probabilistic models with 
data based on Bayes’ theorem [32]. The evaluation of the distribution in the posterior and parameters of a model is used to infer the 
underlying model. Non-inferential methods recognize the variation source without an explicit model to examine the validity of data 
and detect outliers. Non-inferential methods adopt descriptive methods to investigate correlation and coherence for functional 
connectivity. Inferential methods are used to measure connectivity. Both methods have different analysis approaches. Inferential 
methods are based on assumptions of the model to restructure an analysis method. The general linear model (GLM) and dynamic 
causal model (DCM) belong to the inferential method [33‒35]. In the method, the analysis through inference is focused on the model 
parameters and structure. Non-inferential models explore the data to suggest the most appropriate structure. The principal component 
analysis (PCA) [36] or ICA [37‒39] belong to it. As the non-inferential model does not require model specifications, using the 
model is easy but interpreting the results is difficult. Figure 1 describes the inferential and non-inferential approaches. 

 
Fig. 1. Data analysis process of inferential and non-inferential models. 
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2.2. Linear and Nonlinear methods 

A function f with independent variables X = {x , x  x }∈ Rn is linear if f ( X ) = AX+B. A nonlinear function cannot be written 
as such. f ( X ) = AX 2 + BX + C is an example with the constants of A, B, and C. A linear function follows the superposition principle: 
f (ɑ X1 + ɓ X 2 ) = ɑ f ( X1) + ɓ f ( X 2 ). In the control theory of signal processing, a system is characterized solely by a fundamental 
function [32,40]. Here, the system is composed of sets of multiple interconnected components with X(t) (input), Y(t) (output), and 
the system function f(t). f(t) is an impulse response function in the time domain or transfer function in the frequency domain. It 
transforms the input to the output and is represented as Y(t) = f(t) ⊗ X(t) (⊗ : convolution operator). The system is linear only with 
linear f(t). Then, estimating neuronal architectures (coupled neuronal systems) is allowed with the system function. Linear methods 
estimate the dependencies of variables, whereas nonlinear methods do not. The linear method only concerns the transfer function of 
the first order, as the function is easily applied to estimate, while the non-linear method concerns high-order and generalized transfer 
functions as they are related to brain dynamics that are with linear features in bispectral analysis. 

In the frequency domain, cross-frequency interactions are nonlinear as different frequencies are coupled by high-order transfer 
functions [41]. Linear methods measure the coupled frequencies based on a first-order transfer function. Coherence and correlation 
as linear approaches are used to study oscillatory neuronal activity and associated networks [42‒45]. Linear methods are adopted to 
extract the significant data features and summarize system characteristics. However, a linear method does not represent all brain 
signals accurately [46] as nonlinearity is crucial in neuronal dynamics [47]. Nonlinear methods are widely applied in inter-areal 
communication that uses cross-frequency coupling with time-series properties [14, 33, 47‒50]. On a microscopic scale, nonlinear 
interactions at synaptic connections show a modulatory effect on post-synaptic response generation [51]. However, on a macroscopic 
scale, the nonlinear coupling has yet to be fully understood in its roles [47, 51‒52]. However, the nonlinear coupling is thought to 
have modulatory effects for top-down processing [53‒55], which is important as brain function such as prediction uses both bottom-
up and top-down connections in recurrent neuronal message passing. That is, when the area of cortical hierarchy processes sensory 
information, the prediction is passed to the area as bottom-up processing, which is predictive coding [56,57]. 

Such nonlinear coupling plays an important role in selecting bottom-up signals and understanding pathological brain states. 
Studies on Parkinson’s disease suggest that beta rhythms (13‒35 Hz) in the subthalamic nucleus are coupled nonlinearly [58] and 
nonlinear properties of multichannel EEG are manifest [59]. The motor system’s cortico-cortical coherence is decreased in a linear 
relationship under the same pathological conditions (symptomatic) despite related oscillations being synchronized [60]. The linear 
and nonlinear interactions are complementary to each other in the neuronal network, which involves various brain states to affect 
health and disease dynamically. The linearity of two different time-series data in the statistical dependency is used to quantify long-
term interactions by using EEG [43,61] while the nonlinear method is used to explain couplings among different frequencies. The 
linear and non-linear approaches assess different interdependencies between signals [62]. 

2.2. Univariate versus Multivariate approaches 

Univariate and multivariate approaches have different numbers of variables. While univariate methods deal with one variable, 
multivariate methods with multiple variables. Univariate methods are used to estimate controlling parameters of the changes of 
neuronal activity at a point (a channel of MEG/EEG), while multivariate methods are used to assess the dependencies of multiple 
signals. In multivariate approaches, a large-scale interaction is considered with distributed network elements. Univariate analyses 
include task-related power (TRPow), ERD/ERS [63‒65], or correlation dimension (D2) [66,67] which are for a single time series 
to find out a task manipulation and difficulty. In this case, the high task loading produces the greater D2 value. Multivariate 
approaches such as coherence [44, 63‒65], Granger causality [68], cross mutual information [48] and dynamic causal model (DCM) 
[33,34] are used to analyze multiple time series data. The approaches are adopted to estimate neuronal connectivity of the underlying 
network functions. Recently, with the advent of high-performance computing, many machine learning methods have been 
developed, such SVM and deep learning [69]. Machine learning is a data analytics technique that teaches computers to “learn” 
information directly from data. The learning principles, and underlying machine learning algorithms, build a model based on given 
data features/attributes, known as "training data", without explicitly relying on a predetermined functional form for the model. After 
training, the neural network can be used to make predictions, decisions or discover previously unknown structures in the data. MEG 
and EEG studies that employ machine learning methods can be considered a kind of multivariate approach. 

Univariate approaches implement and trace time series data easily. However, multivariate approaches estimate covariances 
from the fluctuations of different time-series data, which is complex to be carried out without appropriate assumptions. For example, 
with independent errors that are not correlated with each other, error covariance estimation becomes straightforward with its 
diagonal matrix [70]. The integration of functionally specialized brain areas controls perceptions, thoughts, and actions. Thus, 
multivariate approaches are more proper to study brain functions. Univariate and multivariate approaches are used to describe 
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different distinct features of the neurophysiological systems, so dependent on each other. The neuronal network connectivity with 
multivariate characteristics increases the system’s dimensional complexity by a univariate measurement (D2 values) [71]. 

2.3. Power modulation versus Phase synchronization 

Oscillations (oscillatory activity) are described in a time-frequency space in two dimensions by using Fourier or wavelet 
transforms. The oscillatory activity in time series is a weighted sum at different frequencies which is calculated by basic functions. 
With a known basic function, the weight of w (different frequencies) and t (time bin of the time series) is projected by a convolution 
procedure, that is, a convolution of x(t) with a basic function φ(t). Thus, W (ω, t) = ∫ x(t) ⋅φ (λ − t)d λ. The basic function is sinusoidal 

and expressed as a Morlet wavelet with Fourier and Morlet wavelet transform. A complex basic function in transformation makes 
the accompanying spectra complicated. Thus, the following components are found in a spectrum: the frequency-specific amplitudes,  
the squared magnitude of the real part of complex numbers, and the instantaneous phase θ (ω,t). This is induced from the imaginary 
part of the complex number as θ (ω, t) = a tan(im(w(w, t)), re(w(w, t))). 

Power and phase are important elements to consider in spectral analysis. A key to understanding neuronal network dynamics 
is found in fluctuations of the synchronization of power and phase. The power and phase in a spectra W(w,t) are written as W (w, t) 
= aw (t) exp(iφw (t)t) where ɑw (t) and φw (t) are the amplitude and phase modulation, respectively [72]. aw (t) and φw (t) can be 
correlated but sometimes independent. This characteristic is used in telecommunication such as amplitude modulation (AM) and 
frequency modulation  (FM) [73]. However, the relationship between phase and power remains unclear in neuroscience. Increases 
of a regional power of event-related synchronization (ERS) increase population activity and phase constancy, while they decrease 
regional power of event-related desynchronization (ERD) as loss of neuronal activity or phase constancy and phase constancy are 
suppressed. ERD increases phase constancy through the anti-phase pair formation [72]. 

Study results in animal neuroscience show that the synchronous discharge in neuronal assemblies interacts in neurons/areas 
that trigger the brain’s organization of functions. Changes in the synchronous discharge cause changes in task-related frequencies 
in ERS or ERD. This phenomenon changes in the course of an event internally or externally. As the change is dependent on contexts, 
it occurs over different time scales to alter the connectivity due to attention modulation and somatotopic reorganization due to limb 
amputation [74]. The change of the spectral densities [75] and partial phase resetting/shifting occurs over multiple frequencies 
[47,70,76]. For example, the coherence of phase constancy at α and β bands enlarges in the primary motor cortex when movements 
are prepared and executed of movement, which is followed by ERD [4]. Babiloni et al. reported that β and γ ERS of the hippocampus 
and θ ERD in the inferior temporal cortex causes the coherence of γ in the middle temporal cortex for repetitive visuomotor events 
[64]. Phase–power relation is used to explain ‘nested rhythms’ [77] which occur by the coupled phase of a low rhythm with that of 
a high rhythm. This is observed in memory tasks that use θ-γ [78] θ-β, θ-β [79], θ-β/γ [80] and in sleep that has infra-slow oscillations 
of ISOs 0.02/0.2–1 Hz [81] and resting (α-high γ) [82]. A tight coupling may exist in the synchrony of power and phase and even 
in two different phenomena. Indeed, the coupling is related to common generative mechanisms and has complementary 
characterizations. Table 1 presents how the above methods are used. 

Table 1. Characteristics of the methods in this study 
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Principal Component Analysis 

(PCA) / Independent 

Component Analysis (ICA) 

 O  O  O O  

Phase synchrony O O  O  O  O 

General Linear Model O   O O  O  

Dynamic Causal Modelling for 

Induced responses 

O O*  O O  O  

Machine learning methods ● ●  O  O ● ● 

+ : Granger causality to measure the nonlinear coupling 
* : Dynamic Causal Modelling to measure the nonlinear coupling 
● : depending on the nature of input attributes, the features may reflect linear and/or nonlinear properties, phase or 
power information 

3. Three practical questions about measuring the brain dynamics and network connectivity 

In this section, we address three practical issues that one could confront when applying these methods to study brain 
dynamics and network connectivity. 

3.1. Functional or effective connectivity? 

There are two ways to parameterize the coupling in brain networks: effective and connectivity. Functional connectivity relies 
upon the statistical dependency among remote neurophysiological time series data. Establishing a connection needs measuring 
mutual information in the general formulation. Usually, one assesses the degree of frontal connectivity or mutual information in 
terms of its statistical significance; i.e., how likely is a correlation under the null hypothesis of statistical independence [48, 66]. 
The most common approaches for functional connectivity analyses are correlation/coherence (linear) and mutual information 
(nonlinear) methods. Numerous studies have successfully applied these methods to quantify the long-range interactions using 
M/EEG. The basic criterion for detecting functional connectivity rests on statistical significance and does not consider the factors 
that affect underlying the dependency. Effective connectivity influences one neural system to exert it over another [53]. In other 
words, a causal mechanism has a dependency. One typical example is Dynamic Causal Modelling [35, 53]. The idea of DCM is 
proposed to understand responses in a perturbed dynamic system by exogenous inputs. A set of differential equations are formulated 
with hypotheses about putative electromagnetic sources. Their connectivity describes the development of the system states. Several 
competing models are compared to investigate the mechanisms and architectures of the functions related to the responses. The 
findings by using DCM are conditional for the compared models and one must have adequate prior knowledge before initiating a 
DCM study. Therefore, if the study goal is to reveal new or unknown relations, functional connectivity may be a more appropriate 
approach. For studying the effect of experimental manipulation in a well-established task, effective connectivity would normally be 
a better starting point. 

An important difference between effective and functional connectivity lies in the undirected versus directed nature of the 
coupling, respectively. In other words, the mutual information between neuronal sources A and B is the same as the mutual 
information between B and A. Conversely, in the effective connectivity, the coupling is directed – usually expressed in terms of 
differential equations, where the influence of A on B differs from the reciprocal influence. The implicit asymmetry may be important 
when trying to understand hierarchal message passing of the sort described above in predictive coding and, more generally, in 
systems like the brain that show turbulent or solenoidal dynamics. Indeed, oscillations are generated by, and only by, asymmetric 
coupling. 
  



58 
 

IJCMB 2021, Vol 1, Issue 1, 53–62, https://doi.org/10.35745/ijcmb2021v01.01.0007 
 

3.2. Can we measure Causality? 

Neuroscience has causality in directional connection and temporal precedence. The importance of temporal order from the past 
to the present is referred to as temporal precedence, while the directional connection to the connection in which A causes B. The 
most common method to measure temporal and directed relationships are Granger causality [68], structural equation modeling 
(SEM) [83], and DCM. In general, DCM, Granger causality, and SEM have common characteristics [83,84] in fMRI. They are used 
for multivariate analyses to estimate the directed coupling and make inferences on models by using temporal causality. At the same 
time, differences are found among them. In determining coupling directions, Granger causality recognizes the causal influences 
concerning the temporal precedence. Thus, the directed connections are found, while SEM and DCM specify the directed 
relationship a priori [53]. Therefore, SEM and DCM tend to infer based on model parameters. In stationary assumptions, Granger 
causality and SEM assume the systems to be at a steady state when measuring the data. However, DCM assumes that the state of a 
model proceeds with time, so it does not make the process stationary, except a DCM for steady-state responses [85]. In the exogenous 
input, DCM and SEM are deterministic and stochastic, respectively. However, Granger causality considers no input. A difference 
between Granger causality and DCM is that the former is usually applied to data without reference to unobserved or latent states 
generating the data. Conversely, in DCM (and some applications of SEM) the data are explained by an underlying generative model: 
either a state-state model based upon differential equations (for DCM) or a general linear model for instantaneous dependencies 
(SEM). A deterministic input (stimulus onset) is important in a generative model as it allows experimental manipulations in models 
[83]. In short, causality can be established through temporal precedence and directed connections, and different methods may probe 
different aspects of causality and be complementary to each other. 

3.3. Question of inter-subject variability in frequencies of interest 

For studies on oscillatory brain activity, it is challenging to determine the frequencies of interest. This is particularly prescient 
with large inter-individual variability, especially in α band [63]. That is, each individual has a preferred frequency band in a task. 
Thus, all frequencies can be explored, which is computationally complex and time-consuming. The other approach is to apply PCA 
to the entire spectrum to extract the subject-specific frequencies of interest, which has been proposed in dynamic causal modeling 
of induced responses [33]. Specifically, the spectral density considering frequency, source, condition, and time is reflected in the 
principal orthonormal frequency. In selecting the number of modes, a modified Kaiser criterion is usually adopted when the 
explained variance exceeds 90% of the total variance. After projection, each mode pertains to all frequencies in different proportions. 
Therefore, subject-specific frequencies are preserved without pre-specifying certain frequencies of interest. The price to pay – in 
PCA – is we discarded certain data. Therefore, the pre-selected frequency band is a good approach if we are confident about the 
induced frequencies. For tasks that elicit significant inter-subject variability in terms of frequencies, methods like PCA may be more 
appropriate. 

4. Summary 

Distributed neuronal dynamics are difficult to solve the problems in message passing and information processing of neuronal 
networks. Up to date, there is no single best method to analyze neurobiological time series. An appropriate method can be chosen 
according to the characteristics and quality of the data. Interpreting the analysis results depends on the adopted method sensitively. 
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