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Abstract: With computational thinking (CT) emerging as a prominent component of 21st century science education, equipping 
teachers with the necessary tools to integrate CT into science lessons becomes increasingly important. One of these tools is 
confidence in their ability to carry out the integration of CT. This confidence is conceptualized as self-efficacy: the belief in one’s 
ability to perform a specific task in a specific context. Self-reported self-efficacy in teaching has shown promise as a measure of 
future behavior and is linked to teacher performance. Current measures of teacher self-efficacy to integrate CT are limited, however, 
by narrow conceptualizations of CT, oversight of survey design research, and limited evidence of instrument validity. We designed 
a valid and reliable measure of Teacher Self-Efficacy for integrating Computational Thinking in Science (T-SelECTS) that fits a 
single latent factor structure. To demonstrate the instrument’s value, we collected data from 58 pre-service teachers who participated 
in a CT module within their science methods course at a large Mid-Atlantic university. We found evidence of significant 
development in pre-service teachers’ self-efficacy for integrating CT into science instruction. We discuss how the T-SelECTS 
instrument could be used in teacher education courses and professional development to measure change in self-efficacy. 
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1. Introduction 

Computational thinking (CT) is an emerging concept in K-12 education, particularly within science instruction (National 
Science and Technology Council, 2018). As reflected by current standards (NGSS Lead States, 2013) and recent legislation (e.g., 
Maryland General Assembly, 2018), educators are increasingly expected to integrate CT into their teaching to prepare students for 
a computational world. This expectation, however, faces significant challenges. First, the definition of CT is contested (Tedre & 
Denning, 2016): researchers and educators define CT both as a broad problem-solving strategy that can be applied “everywhere” 
(Wing, 2006) and as a “range of concepts, applications, tools, and skill sets” (National Research Council, 2010, p. 10). This variety 
in definitions can make it difficult for teachers to understand the conceptual underpinnings of CT and therefore to clearly bound 
“what counts” as CT in their classrooms.  

A second challenge to integrating CT into formal education is that typical teacher education and professional development 
programs rarely address concepts related to CT and computing. By 2019, only 19 states required some computer science training 
for all preservice teachers (Code.org Advocacy Coalition et al., 2019). Therefore, teachers typically have not been prepared to 
envision CT in their classrooms and effectively integrate it into their instruction. To address these challenges, researchers and teacher 
educators highlight the importance of developing new ways of equipping teachers with (a) the necessary technological pedagogical 
content knowledge (Mishra & Koehler, 2006; Mouza et al., 2017; Shulman, 1986) and (b) the confidence to carry out the integration 
of CT in their teaching (Barr & Stephenson, 2011; Yadav et al., 2014).  

Although teacher education efforts with these goals are emerging (e.g., Hestness et al., 2018; Israel et al., 2015; Yadav et al., 
2014; Yang et al., 2018), the measurement of these outcomes is still early in its development. From our review of efforts to capture 
teachers’ levels of confidence in integrating CT, current measures are limited by narrow conceptualizations of CT as programming 
or robotics, scales with insufficient response options in surveys, and double-barreled questions. Thus, in order to measure self-
efficacy as an outcome variable, a reliable and rigorously validated measure must be developed. In this paper, we describe the design 
of a measure of confidence in integrating CT, provide evidence of its reliability and validity, and evaluate the effects of one teacher 
education intervention on the development of teachers’ confidence using this measure. To conceptualize the level of confidence that 
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teachers have in their ability to integrate CT into their instruction, we use the concept of teacher self-efficacy (Bandura, 1977, 1997; 
Pajares, 1996), which researchers have shown can be an important predictor of teaching performance (Klassen & Tze, 2014) and 
their students’ outcomes (Ashton & Webb, 1986). Therefore, our study focuses on the following research questions: 

1. To what extent is the Teacher Self-Efficacy for integrating Computational Thinking in Science (T-SelECTS) scale a valid and 
reliable instrument?   

2. To what extent does pre-service teacher self-efficacy for integrating CT change after participating in a CT module within a 
science methods course as measured by this instrument? 

To situate our research questions within the broader research fields of self-efficacy and teacher education, we review relevant 
literature below. Particularly, we present the theoretical framework of self-efficacy, explain the importance of self-efficacy for 
teacher education, and connect these concepts to the emerging challenges of preparing teachers to integrate CT into their instruction. 

Self-efficacy refers to a person’s belief in her ability to perform specific tasks under given conditions (Bandura, 1977, 1997). 
As a psychological construct, self-efficacy is highly specific: people have different levels of self-efficacy for different tasks. In other 
words, capturing a person’s self-efficacy around solving mathematical equations may not provide any information on her confidence 
to teach 1st grade students how to read. Bandura (1993) suggested that people with high self-efficacy in a particular domain can set 
higher goals for themselves, react more positively to setbacks, and approach difficult tasks within that domain as opportunities for 
learning. 

This link between self-efficacy and how tasks are approached is supported by studies showing that self-efficacy can be a useful 
predictor of the respondent’s performance within the context of the tasks assessed. For example, Milner described how a teacher 
who had developed a high sense of self-efficacy reacted to critical feedback from her students with persistence and an urge to “step 
up to the plate” (2002, p. 32). This predictive relationship has also been shown in other educational contexts (Pajares, 1996) and 
through different measures of teacher self-efficacy and teacher performance (see Tschannen-Moran & Hoy, 2001 for a review). A 
more recent review of the literature regarding the relationship between self-efficacy, personality, and teacher performance found a 
significant link between self-efficacy and teaching performance evaluations (Klassen & Tze, 2014).  

In the context of science teaching, multiple studies investigated the link between teacher self-efficacy and teaching 
performance. For example, Haney et al. (2002) investigated the relationship between teachers’ self-efficacy around science teaching 
and their ability to effectively teach science as determined by the Horizon Protocol (Horizon Research, 1998). They found that 
teachers with higher self-efficacy also scored higher on teaching effectiveness. Andersen et al. demonstrated that teachers with a 
high degree of teaching self-efficacy are more likely to implement lessons that are inquiry-based, interdisciplinary, and tied to the 
real world. On the other hand, low self-efficacy may lead to the implementation of poorly designed, ineffective learning experiences, 
as seen in the work of Ginns and Watters (1990).  

With these studies in mind, it is clear that self-efficacy is an important psychological factor that plays a role in teacher 
performance. Indeed, models of teacher learning consider teacher beliefs, including beliefs around teaching capability, to be 
influential in teachers’ learning and professional development (Clarke & Hollingsworth, 2002; Gregoire, 2003; Hammerness et al., 
2012). Therefore, teacher education and professional development efforts should aim to equip teachers with the necessary 
confidence in their ability to teach effectively in addition to content knowledge and pedagogical resources. This need may be most 
essential when teachers are expected to carry out difficult innovations in teaching, such as restructuring science learning to be 
inquiry-based and centered on argumentation (Duschl & Osborne, 2002), or, most relevant to this study, integrating CT into their 
science teaching (Barr & Stephenson, 2011). 

Considering that self-efficacy is an important construct that should be measured as an outcome of teacher education and 
professional development efforts, this paper contributes to the field by developing, validating and testing an instrument for 
measuring teacher self-efficacy around integrating CT into science instruction. 

Researchers who argue that all students should learn CT propose K-12 formal classrooms as a natural context to create 
widespread CT learning opportunities. However, the integration of CT into formal education depends largely on those who create 
and deliver learning opportunities for students: teachers (Barr & Stephenson, 2011; Guzdial, 2020; Yadav et al., 2014). 

Researchers have investigated multiple aspects of the task of preparing teachers to effectively integrate CT into their 
instruction. Recognizing that current and future teachers already face significant curricular constraints (both at their teacher 
education programs and at the K-12 level), researchers have attempted to integrate CT into existing coursework and disciplines. For 
example, multiple researchers have investigated how teachers learn about CT through a technology integration course and develop 
competencies to infuse CT into their disciplines (Mouza et al., 2017; Pollock et al., 2019) while other studies have focused on 
understanding how teachers can integrate CT into science education, given the increasing relevance of computational methods in 
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scientific investigations. For instance, researchers have studied how pre- and in-service teachers develop an understanding of 
computational ideas and CT to integrate them into their science instruction at the elementary (Hestness et al., 2018; Rich & Yadav, 
2019; Yadav et al., 2018) middle (Cadieux Boulden et al., 2018), and high school levels (Ahamed et al., 2010). Researchers and 
teacher educators have also developed frameworks to guide these efforts, identifying the aspects of CT that can be integrated into 
science (Sengupta et al., 2013; Weintrop et al., 2016). Taken together, these studies and frameworks suggest that, to make effective 
CT integration a reality, teachers need to develop at least three competencies: (1) an accurate understanding of CT, (2) an 
understanding of its pedagogical applications within science, and (3) the confidence and agency to carry out its integration into their 
classroom teaching. 

While other work is investigating how to measure teachers’ progress in providing teachers with an accurate understanding of 
CT and its pedagogical applications within science (Mcklin et al., 2019), this study focuses on the third competency: measuring 
teachers’ confidence in integrating CT into their science teaching. When we reviewed previous studies that have attempted to 
measure educators’ level of confidence with CT, we found important limitations in self-efficacy measurement. For instance, a survey 
originally designed by Yadav et al. (2014) aims to measure “comfort with computing” which focuses on teachers’ beliefs around 
their ability to use computers in the classroom and to learn about CT. While these responses may provide some information on 
teachers’ self-efficacy around integrating CT, the survey is not designed to capture the different aspects that can influence that 
efficacy self-assessment. Particularly, the only two items related to classroom implementation ask teachers to rate their agreement 
with the fact that CT “can be incorporated in the classroom” (p. 13). Unfortunately, these items do not measure whether teachers 
feel like they can carry out that incorporation—only whether they believe the incorporation is possible. 

While multiple studies around CT teacher education have used Yadav’s survey (e.g., Leonard et al., 2017; Mouza et al., 2017), 
other researchers have developed their own instruments. In some cases, these instruments have been limited by design choices 
contrary to theories of self-efficacy measurement (Bandura, 2006) and survey development (Krosnick & Presser, 2010). For 
instance, some instruments contained double-barreled questions that forced respondents to pick one answer even if they would 
answer differently to each part of the question. For example, a self-efficacy scale asked participants to determine their agreement 
to the following statement: “I believe that incorporating computational thinking activities into my teaching could increase student 
interest in science and technology.” (Ahamed et al., 2010). In this case, respondents could have different opinions about whether 
incorporating CT would increase student interest in science versus technology. This potential ambiguity limits the confidence that 
each participant interpreted the item similarly.  

Another common issue in current measures is the use of insufficient response options to properly capture variability in 
respondent attitudes. For instance, Yadav’s survey analyzed above only contained four response items in a strongly disagree-strongly 
agree scale—a practice that, albeit common, is not recommended by survey methodologists (Krosnick & Presser, 2010; Schaeffer 
& Presser, 2003). 

Other studies used insufficient items to properly measure the reliability of their instruments. For example, Bower and Falkner 
(2015) used only one survey item to measure teacher’s confidence in “developing their students’ CT abilities” (p. 42). Similarly, 
Curzon et al. (2014) used only one item to ask teachers whether they believed the CT workshops they participated in were 
“confidence building” (p. 92). Studies that did measure reliability of their instruments typically limited these analyses to a 
Cronbach’s alpha level to provide evidence of internal consistency. However, while Cronbach’s alpha can show that the survey is 
capturing a single construct, issues regarding validity (in other words, whether the construct is measuring what it is attempting to 
measure) remain. 

Existing measures of teacher self-efficacy around CT are also limited by narrow conceptualizations of CT. In cases where 
researchers developed their own instrument, the definition of CT—and therefore the items in their instrument—only fit the specific 
context of that study. For example, Jaipal-Jamani and Angeli (2017) measured teacher confidence using four items and a 0-100 
response scale but their items only asked about the ability to use robotics for classroom instruction. In another study, Bean et al. 
(2015) only created items regarding teachers’ confidence in using programming within their classroom teaching. While robotics and 
programming can certainly be important applications of CT, these instruments are of limited usefulness to researchers who aim to 
develop more general competencies in integrating CT and need to measure teachers’ confidence in their ability to carry out that 
integration. 

In this study, we aim to counter the limitations we identified in the literature and provide a reliable and validated measure of 
teachers’ self-efficacy in integrating CT into science. Below, we describe the context of our study where we developed and tested 
the instrument, detail the development of the survey, provide evidence of its validity and reliability, and demonstrate its usefulness 
in measuring self-efficacy within the context of a teacher education CT module. 
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2. Materials and Methods 

The Teacher Self-Efficacy for integrating Computational Thinking in Science (T-SelECTS) scale was developed as part of a 
National Science Foundation funded research project at a large Mid-Atlantic university that aims to understand how pre- and in-
service teachers learn to integrate CT into their elementary science instruction (Hestness et al., 2018; Killen et al., 2020; McGinnis 
et al., 2019). The study has two main intervention components: (1) a CT module within an existing science methods undergraduate 
course for pre-service teachers and (2) a professional development (PD) experience where pre-service and in-service teachers work 
together to develop CT-integrated science lessons for the elementary level. To answer our first research question, we draw on both 
components of the study. To answer the second research question, we draw exclusively on the CT module and responses from pre-
service teachers.  

As Fig. 1 depicts, we designed the T-SelECTS instrument and conducted our validation testing in five steps. We present our 
process and findings in this sequence below. 

 

Fig. 1. Instrument Design and Validation Process. 

We designed the T-SelECTS scale based on a review of the CT literature that identified what teachers would need to master 
to effectively integrate CT into their science teaching. Specifically, we referenced the Science Teaching Efficacy Belief Instrument 
- Form B (STEBI-B; Enochs & Riggs, 1990) to capture the important aspects of science teaching that could be relevant to our 
measure. This valid and reliable instrument is a widely used standard in science teacher education and has been used to measure 
teacher self-efficacy in a variety of educational contexts (Deehan, 2017). Based on the STEBI-B, we created new items to attempt 
to measure teacher perceptions of their technological, pedagogical, and content knowledge around CT and science (Mishra & 
Koehler, 2006; Mouza et al., 2017; Shulman, 1986). Particularly, we based our instrument on STEBI-B items 5, 8, 12, and 18, which 
refer to teachers’ understanding of and ability to teach disciplinary content and their ability to answer student questions related to 
that content. We then added items to measure how teachers perceived (a) their own understanding of CT as a concept, (b) their 
ability to integrate it into their science teaching, (c) their ability to use educational technology to support their teaching, and (d) their 
ability to engage their students in thinking computationally.  

The first version of our survey, which we piloted among 32 pre- and in-service teachers that participated in earlier stages of 
our project (Cabrera, Jass Ketelhut, et al., 2019; Cabrera, McGinnis, et al., 2019), was a productive initial attempt to measure self-
efficacy but displayed many of the limitations that exist in similar instruments. This first version included six items and asked 
teachers to respond with a four-point Likert-like scale (Strongly Disagree, Disagree, Agree, and Strongly Agree). This scale was 
based on the original STEBI-B instrument, but we removed the middle option (Uncertain) to capture teachers’ preference towards 
agreement or disagreement in each item. However, the results of this pilot showed that four response options were insufficient to 
capture variability in confidence among teachers. Specifically, on three of our items, 75% or more respondents chose the option 
“Agree” and only a few others chose a different option. In two other items, participants split between two choices, only allowing us 
to make comparisons between those who “Agreed” and those who “Strongly Agreed”—a differentiation we did not find to be 
particularly informative.  

Our pilot analysis results also revealed other important limitations. For example, through focus groups that we conducted at 
the end of the course and PD series, we learned that some words in our survey (like “resources”) could be interpreted in multiple 
ways. We also noticed that some items seemed to be uncorrelated with the rest of the survey, indicating that they were irrelevant to 
self-efficacy development. Therefore, we redesigned the instrument to respond to these limitations and incorporate further 
recommendations from the literature on self-efficacy measurement. 

Instrument 
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Data Collection 
in two 
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Efficacy Change
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The first step in redesigning the instrument was to remove any items that seemed to be irrelevant to the measurement of self-
efficacy. An initial review of the original instrument indicated that two items asked teachers to rate their ability on tasks that were 
beyond the expectations of what teachers would need to do to effectively integrate CT into science teaching. One item referred to 
the ability to find resources around CT, which, in our review, we deemed as irrelevant ability to effectively integrating CT because 
teachers were already being given the necessary resources to perform that task in the two interventions described above—they did 
not have to find them. The second item regarded the ability to teach peers about CT. While we initially created this item as a task 
that would be hard for teachers to perform (and therefore provide a range of task difficulty items; Bandura, 2006), we hypothesized 
that teachers could have high self-efficacy in their ability to integrate CT into their own teaching without necessarily having a related 
level of self-efficacy in sharing that knowledge with other teachers. Therefore, the two items were removed from the final 
instrument. 

Additionally, we added new items to the instrument that asked about different parts of the process of integrating CT into 
science instruction. While the piloted instrument only asked teachers whether they could define CT, the new survey included items 
about defining CT, adapting lessons to include CT, creating new lessons that include CT, and answering CT-related student 
questions. These items covered a wider range of tasks that constitute the larger process of CT integration. 

In response to the lack of variability in responses we found using the first version of the survey, we changed the response 
structure in the final instrument to capture self-efficacy with a continuous measure, following Bandura’s (2006) recommendations 
to create scales with long response continua and multiple items representing tasks of different difficulty. To respond to each item, 
teachers dragged a slider to mark a number between zero (Definitely cannot do) and 100 (Definitely can do). The self-efficacy 
portion of the survey was preceded by four practice items where teachers rated their ability to lift items between 5–300 pounds. 
These practice items were intended to acquaint teachers with the dragging function of the 0–100 scale in the instrument.  

 

Fig. 2. Survey item scale. 

To strengthen the face validity of the scale, we consulted with content experts, asking them to review the instrument and its 
items. We consulted six faculty members with expertise in elementary science teaching, teacher education, and computer science. 
These included both senior members of our research team and the study’s external advisory board. Their recommendations centered 
around rewording items to avoid leading questions, deleting items that made assumptions about teachers’ backgrounds, and adding 
“granularity” to the survey by adding items that cover multiple aspects of integrating CT into science instruction. The final 
instrument included six items, listed in Table 1.  

To measure the construct validity, reliability, and usefulness of our instrument, we administered it in two different educational 
contexts during the Fall 2018 and Winter 2019 semesters: a CT module within a pre-service science methods course and a CT 
professional development series with pre- and in-service teachers.  

All participants were recruited to volunteer in the survey via email and in-class appeals by the research team and were 
incentivized financially. Participants were required to take the surveys as part of their voluntary participation in the study. They 
were informed that their responses would be kept confidential and all data would be de-identified for publication or reporting. For 
pre-service students recruited through the methods course, participation in the study had no impact on students’ grades or class 
performance assessment.  
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To answer our first research question, regarding the measurement of self-efficacy, we analyzed the pre-test survey responses 
from all study participants including both in-service and pre-service teachers in both contexts. In-service teachers took the pre-test 
as part of the beginning of the first session of the PD experience, while pre-service teachers took the pre-test survey at the beginning 
of the first class of the CT module in their science methods undergraduate course.  

To answer our second question, we again surveyed the pre-service teachers at the end of their methods course. We compared 
their pre- and post-test responses to determine the extent to which pre-service teachers’ self-efficacy changed after participating in 
a science methods course with a CT module.  

To answer our first research question, To what extent is the Teacher Self-Efficacy for integrating Computational Thinking in 
Science (T-SelECTS) scale a valid and reliable instrument?, we collected 81 pre-test responses from 18 in-service and 63 pre-
service teachers that participated in either the CT module within the undergraduate science methods course or the CT PD series. 
The majority of our participants identified as white women: 75 women, six men; nine (11.11%) Asian/Asian-American, four (4.94%) 
Black/African-American, nine (11.11%) Latinx/Hispanic, five (6.17%) Multi-racial, one (1.23%) other, and 53 (65.43%) white. 
Participants’ self-reported teaching experience ranged from having none to 34 years of experience (Mean = 4.79 years, SD = 7.31, 
Mode = 1 year). 

To answer our second research question, we analyzed responses from a subset of participants: those who participated in one 
component of the study—the CT module in the science methods course. Selecting responses from only one context allowed us to 
use the instrument to measure change in a single intervention. Including participants who participated in two different contexts 
would make comparisons between timepoints less meaningful. Specifically, we compared the pre- and post-tests of the 58 pre-
service teachers who responded to all six items on both surveys: 53 women, five men; seven (12.07%) Asian/Asian-American, three 
(5.17%) Black/African-American, nine (15.52%) Latinx/Hispanic, one (1.72%) multi-racial, one (1.729%) other, and 37 (63.79%) 
white. Most (56) of the participants were between 22–26 years old, the remaining two people were 36 and 45.  

Because our preliminary normality testing (Shapiro & Wilk, 1965) provided evidence of some nonnormality, we adopted 
robust statistical methods. To answer our first research question, we conducted an Exploratory Factor Analysis (EFA) using 
maximum likelihood estimation with robust standard errors (MLR) in MPlus 8.0 to correct for the small sample size, missing data 
points, and non-normality of our sample (Muthén & Muthén, 1998-2017). 

We retained the solution with the best model fit as determined by model fit indices, eigenvalues, scree plot, and factor loadings: 
a non-significant Chi-square statistic, a standardized root mean square residual (SRMR) value below .08, a comparative fit index 
(CFI) and Tucker Lewis index (TLI) above .95, and a root mean square error of approximation (RMSEA) score below .06 (Hu & 
Bentler, 1999; Thompson, 2004). To assess the reliability of the determined scale, we first calculated the internal reliability using 
Cronbach’s alpha, an index of internal consistency (Raykov & Marcoulides, 2011). To produce a robust measurement of reliability, 
we then calculated the factor replicability, the H-index, seeking a value less than .80 (Hammer, 2016; Hancock & Mueller, 2001).  

To answer our second research question, we conducted descriptive analyses and a robust nonparametric version of a paired-
samples t-test called the Wilcoxon signed-rank test (Byrne, 2017) in SPSS 25 using the aggregate variables of pre-service teachers’ 
pre-test survey responses and post-test survey responses. 

3. Results 

3.1 Construct Validity 

Before conducting an EFA, we checked for normality, sample size, and sample fitness using SPSS. Four respondents failed to 
answer all six items (i.e., there were four missing data patterns). A Shapiro-Wilk test of normality provided evidence that some of 
the items suffered from issues of non-normality (p < .05). To determine the appropriateness of the EFA, we calculated the Bartlett 
test of Sphericity and the Kaiser-Meyer-Olkin Measure of Sampling Adequacy (MSA). We found acceptable values for the MSA 
at .92 and Bartlett test of Sphericity (χ^2 = 691.29, p<.000). From these results, we proceeded to perform an EFA with maximum 
likelihood estimation with robust standard errors to correct for the missing and nonnormal data in our sample. 

We first consulted a scree plot (see Fig. 3) which depicted that a single-factor solution accounted for the majority of the 
variance in the model. This conclusion was supported by the evidence that only the one-factor solution produced an Eigenvalue 
greater than one. We concluded that a one-factor solution would be adequate. 
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Fig. 3. Scree plot. 

We reviewed the model fit statistics, and determined that the one-factor solution demonstrated acceptable fit: the robust Chi-
Square statistic (asymptotically equivalent to Yuan and Bentler’s T2 statistic; Muthén & Muthén, 1998-2017) was not significant 
(χ^2 = 16.93, p=.05), the SRMR = .02 was well below the threshold of .08 and the CFI = .98 and TLI = .96 were both above .95. 
The low sample size contributed to the low p-value of the Chi-Square statistic and the high RMSEA = .10 (CI: .00–.18; Kenny et 
al., 2014). We conclude by retaining the one-factor solution which we interpret as the latent factor of Teacher Self-Efficacy for 
integrating Computational Thinking in Science (T-SelECTS).  

Table 1. Factor Loadings with Oblique Rotation. 

Item 
Number Item Factor 

Loading 

Estimated 
Residual 

Variances 
1 Defining computational thinking practices 0.87* 0.25 
2 Identifying a computational thinking practice in an educational science 

activity 
0.94* 0.12 

3 Adapting an existing science lesson to include computational thinking 0.95* 0.10 
4 Creating an original science lesson that includes computational thinking 0.92* 0.16 
5 Engaging students in computational thinking during science instruction 0.96* 0.08 
6 Answering student questions regarding computational thinking activities 0.95* 0.10 

* significant at 5% level 

As presented in Table 1, all six items loaded onto a single factor. All loadings surpassed the .30 cutoff threshold and were 
significant at the .05 level suggesting that items correlated strongly with the latent T-SelECTS construct. The estimated residual 
variances are the observed variable variances after accounting for the model variance (Muthén & Muthén, 1998-2017). We 
calculated the cumulative variance explained to be 93.17% by adding all of the rotated loadings and dividing by the number of 
items. 

3.2. Reliability 

The items loading onto the T-SelECTS factor were aggregated into a single variable. The internal reliability of the T-SelECTS 
factor is acceptable (∝ = .98). The H-value for the T-SelECTS factor was .98; far above the .80 threshold suggesting the items are 
an acceptable representation of the latent construct (Hancock & Mueller, 2001). 

3.3. Using the T-SelECTS to Measure Change in Self-Efficacy 

To respond to our second research question, we compared the pre- and post-test responses of pre-service teachers participating 
in the science methods course where the CT module was integrated. As depicted in Table 2, 58 pre-service teachers completed both 
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the pre and post-test surveys with a post-test mean T-SelECTS score (83.86) nearly double of that the pre-test (37.66). We conducted 
a Wilcoxon Signed-Rank Test and found a significant increase in pre-service teacher’s T-SelECTS scores after participating in the 
methods course with a CT module, Ζ= -6.54, p<.001, with a large effect size (r = .61; Cohen, 1988). The median T-SelECTS score 
increased from 36.50 on the pretest to 87.58 on the post-test.  

Table 2. Descriptive Statistics of Pre- and Post-Test T-SelECTS Scores. 

Time Point Mean Median SD SE 

Pre-Test (September) 37.66 36.50 23.61 3.10 
Post-Test (December) 83.86 87.58 11.80 1.55 

4. Discussion 

In this study, we present evidence that the T-SelECTS instrument is a reliable and valid measure of teacher’s self-efficacy for 
integrating CT into science teaching. We also demonstrate its usefulness in measuring the impact of a CT module integrated into a 
science methods teacher education course. As researchers, teacher educators, and policy-makers aim to equip teachers with the 
necessary tools to integrate CT into science instruction (Barr & Stephenson, 2011; National Science and Technology Council, 2018; 
Yadav et al., 2014), this survey is a promising instrument to measure teachers’ confidence in their ability to carry out that integration. 
Specifically, our survey addresses limitations in extant work such as insufficient response options, double-barreled questions, and 
narrow conceptualizations of CT integration. To counter these issues, our instrument uses a 0-100 confidence scale with items that 
cover a spectrum of tasks of increasing difficulty (Bandura, 2006) associated with the integration of CT into science instruction: 
from learning about CT as a concept to developing CT-infused science lessons and answering CT-related student questions.  

Moreover, the instrument shows promise in its ability to capture variability and change in self-efficacy over time. In our CT 
module within the teacher education science methods course, we found that, among 58 pre-service teachers who participated in our 
program and completed our pre- and post-test surveys, there was a significant development in their self-efficacy for integrating CT 
in future science instruction. Because equipping teachers with the tools to integrate CT into science also involves promoting their 
confidence to lead that integration, self-efficacy, as measured by the T-SelECTS instrument, could contribute useful information 
for teacher educators and researchers about the effectiveness of CT integration programs. Therefore, we believe that teacher 
educators and researchers can use this survey to measure levels of self-efficacy in integrating CT into science in pre- and in-service 
teacher education contexts.  

Future researchers adopting the T-SelECTS instrument could further validate this instrument by increasing the sample size of 
the participations and randomizing the position of the items in the survey. Additional validation could be aided by analyzing 
qualitative data that corresponds to survey respondents (Cabrera et al., 2020). Further analysis of the residual correlation between 
the items is needed to clarify if the similarity of the item phrasing resulted in participants marking similar responses for multiple 
items.  

The self-efficacy gains measured by the T-SelECTS instrument indicate that the CT module was effective in imparting a sense 
of confidence in teachers in their ability to integrate CT into their future instruction. This increased self-efficacy may lead teachers 
to set higher goals of CT integration for their lessons and allow teachers to approach the task of CT integration as a learning 
opportunity to improve their teaching performance (Bandura, 1993). Additionally, it is possible that the increased sense of self-
efficacy may lead to better teaching performance and student outcomes (Ashton & Webb, 1986; Klassen & Tze, 2014; Pajares, 
1996). However, while our module was successful at increasing teachers’ self-efficacy in their ability to integrate CT, the 
relationship between perceived capability and their implementation of these integrations is beyond the scope of this study. Although 
studies link self-efficacy with improved teacher performance, we do not address how feelings of competence predict or relate to the 
ways in which teachers integrate CT into their science teaching in this paper. Future studies could seek to establish a more direct 
link between pre-service teachers’ knowledge, attitudes, and feelings and their classroom practice. 

5. Conclusions 

While significant attention in being paid to the preparing teachers to integrate CT into their teaching, studies aiming to measure 
teachers’ confidence in their ability to integrate CT into science have important limitations. Thus, there is a gap in the literature on 
how teacher education and professional development programs should evaluate teacher confidence growth or determine their own 
program’s effectiveness. This study addresses this gap by presenting a valid and reliable measure of Teacher Self-Efficacy for 
Integrating Computational Thinking in Science (T-SelECTS). Built upon decades of self-efficacy measurement theory, we found 
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the T-SelECTS fits a one-factor model of self-efficacy and has good internal reliability. We contribute the T-SelECTS to the toolset 
of future researchers and educators to advance our collective goal of supporting CT integration across K-12. 
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Appendix A: Complete Final Survey 

The following form lists different activities. Rate how confident you are that you can do them as of now. Rate your degree of 
confidence by recording a number from 0 to 100 using the scale given below: 

 0 10 20 30 40 50 60 70 80 90 100 

Lifting a 3 pound object () 
 

Lifting a 50 pound object () 
 

Lifting a 15 pound object () 
 

Lifting a 300 pound object () 
 

Now that you're familiar with the type of question, let's move on to the next section.  
The following form lists different activities. Rate how confident you are that you can do them as of now. Rate your degree of 

confidence by recording a number from 0 to 100 using the scale given below: 

 Definitely cannot do Definitely can do 

 0 10 20 30 40 50 60 70 80 90 100 

Defining computational thinking practices 
 

Identifying a computational thinking practice in an 
educational science activity  
Adapting an existing science lesson to include 
computational thinking  
Creating an original science lesson that includes 
computational thinking  
Engaging students in computational thinking during 
science instruction  
Answering student questions regarding computational 
thinking activities  
Finding resources to facilitate my integration of 
computational thinking into science teaching  
Teaching colleagues how to include computational 
thinking into their science teaching  
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