

Article

Using Different Methods to Measure the Optical Energy Bandgap of Un-annealed and Annealed Ga₂O₃ Films

Ting-Yu Lin¹, Sang-Yuan Han¹, Cheng-Yi Huang², Cheng-Fu Yang^{1,3*} and Sufen Wei^{4,*}

¹ Department of Chemical and Material Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan; tom110113119@gmail.com (T. U. Lin); qwer1234tyui@gmail.com (S.Y. Han); cfyang@nuk.edu.tw (C. F. Yang)

² Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan; 0309352@gmail.com

³ Department of Aeronautical Engineering, Chaoyang University of Technology, Taichung 413, Taiwan

* Correspondence: cfyang@nuk.edu.tw, 200961000013@jmu.edu.cn

Received: May 21, 2021; Accepted: Jul 2, 2021; Published: Aug 30, 2021

Abstract: In this study, electron beam (E-beam) was used to deposit Ga₂O₃ films on the sapphire (Al₂O₃) substratest, then Ga₂O₃ films were divided three groups, unannealed, annealed at 850 °C, and annealed at 950 °C, respectively. After that, three different methods were investigated to find the optical energy bandgap of un-annealed and annealed Ga₂O₃ films. First was used n&k analyzer to measure all the optical energy bandgaps of un-annealed and annealed Ga₂O₃ films directly; Second, all the measured transmittance spectra of un-annealed and annealed Ga₂O₃ films, then the cut wavelength at the zero transmittance ratio of the extrapolated straight line according the slope of the absorption edge was used to measure optical energy bandgap using the equation of Eg= 12400/cut wavelength. Third, the curve of $(\alpha hv)^2$ against the energy (hv) value was plotted according to Eqs. $\alpha hv = C (hv - Eg)^{1/2}$ and T = $(1 - R)^2 \exp(-\alpha d)$, and the extrapolated straight line was used to measure the optical energy bandgap of un-annealed Ga₂O₃ films. Finally, the measured results were well compared.

Keywords: Different methods; Optical energy bandgap; Un-annealed and annealed; Ga₂O₃ films

1. Introduction

Semiconductive power switching devices with high power and high efficiency are strongly required by today s^{oc}iety, because these devices contribute to worldwide energy reduction and conservation. SiC and GaN are representatives of wide-bandgap semiconductors and they have attractive material properties for the applications in power device, for example, their breakdown electric fields and energy bandgaps are larger than those of Si-based devices, therefore, they are expected to overcome the limitation of Si-based devices [1]. Recently, Ga₂O₃-based semiconductors have attracted many researches and become a new competitor to GaN- and SiC-based devices, because Ga₂O₃ films are another wide-bandgap material, and they recognized as another important next generation materials to fabricate power devices. Ga₂O₃-based films also have some significant characteristics, for example, their energy bandgaps are larger than those of GaN- and SiC-based devices [2, 3]. Ga₂O₃-based materials have five different crystal types, which are denoted by α , β , γ , δ , and \in [4], and the β -Ga2O3 is the most stable phase, the other four phases are recognized as the intermediate phases and they are unstable as the temperature raises.

Many different methods and substrates are used to deposit β -Ga₂O₃ films. For example, the plasma-assisted molecular beam epitaxy method to the β -Ga₂O₃ films on single crystals of β -Ga₂O₃,GaN, and sapphire under different parameters to epitax the pure-phase β -Ga₂O₃ films [5]. Winkler et al. used a water-based chemistry solution as precursor and the spraying process as a method to deposit the homogeneous nanocrystalline Ga₂O₃ films on commercial fluorine-doped tin oxide (FTO), tin-doped indium oxide (ITO), and spray pyrolysis deposited Indium zinc oxide (IZO) substrates [6]. Wheeler et al. used a plasma-enhanced atomic layer deposition (PEALD) method to grow the Ga2O3 film on sapphire substrates. They found that PEALD is an energy-enhanced and conformal synthesis method, and this method has many advantages, including improved crystallinity, access to metastable phases, and reduced growth temperatures [7]. The β -type crystal has the monoclinic β -gallia structure. Because it is the most stable Ga₂O₃ phase and the other phases are metastable phase during the heating process of Ga₂O₃, therefore, it is the only crystal structure available for the growth of Ga₂O₃-based single crystal.

Mnay methods were investigated the Ga_2O_3 films and used the deposited Ga_2O_3 films to fabricate a metal-insulatorsemiconductor (MIS) diode or a thin-film transistor (TFT). For example, Hao et al. used $Ga(OH)_3$ solution as precursor used the liquid-phase deposition (LPD) method to the α -GaOOH crystal film. After the α -GaOOH crystal was obtained by the decomposition

of the Ga(OH)₃ solution, the post annealing process was used to transform the α -GaOOH into the α -Ga₂O₃ crystal. Then, Hsieh et al. used the deposition α -Ga₂O₃ film to fabricate a MIS diode [8]. Thomas et al.used an ultrasonic spray pyrolysis method to grown the Ga₂O₃ film at 400–450 °C in ambient atmosphere, then they annealed the deposition Ga₂O₃ film at different temperatures to find their optimum properties. Then, they used the annealed Ga₂O₃ film and using heavily doped Si⁺⁺ wafer as the common gate electrode to fabricate a bottom-gate, top-contact TFT [9].

The reported energy bandgaps of β -Ga₂O₃ are widely distributed in the range of 4.4–4.9 eV [1-3, 10], which is caused by the complexity of optical processes in Ga₂O₃-based materials. Thus, the really energy bandgaps of β -Ga₂O₃ are difficult to confirm, and in this study, we had investigated three different methods to measure the energy bandgaps of β -Ga₂O₃ films. Because Ga₂O₃ films were deposited using E-beam method and deposition Ga₂O₃ films presented amosphorous, therefore, we needed to anneal deposited Ga₂O₃ films at the high temperatures of 850 and 950 °C to transform amosphorous Ga₂O₃ films into the β -Ga₂O₃ films. As we know, n&k analyzer is a multi-functional equipment because it can measure refractive index, the extinction coefficient, the optical energy bandgap, the reflectance spectrum, the transmittance spectrum, and thickness of a deposition film at the same time. Therefore, the first method is that n&k analyzer was used to measure all the optical energy bandgaps of un-annealed Ga₂O₃ films were measured, then, we uesd the cut wavelength at the zero transmittance ratio of the extrapolated straight line according the slope of the absorption edge to measure optical energy bandgap using the equation of Eg= 12400/(cut wavelength). Third, we would plot the curve of $(\alpha hv)^2$ against the energy (hv) value according to Eqs. $\alpha hv = C$ (hv - Eg)^{1/2} and T = (1 - R)² exp(- αd), and the extrapolated straight line was used to measure the optical energy bandgap of un-annealed or annealed Ga₂O₃ films. Then, the average optical energy bandgaps of five samples measured using three different methods were compared in this study.

2. Materials and Methods

At first, the pure Ga₂O₃ (99.99%) was sintered at 1200 °C to fabricate Ga₂O₃ target. After the sapphire (Al₂O₃) substrates were cleaned, electron-beam (E-beam) evaporation method was used to deposit Ga₂O₃ film. The deposition parameters of Ga₂O₃ film were that the working pressure in the vacuum chamber was set at 3 x 10⁻³ Torr, the distance between substrate and target was about 60 cm, room temperature (RT) was used as the deposition temperature, respectively, and no gas was introduced into the chamber during the deposition process. Because we wanted transform the amorphous Ga₂O₃ films intoβ-Ga₂O₃ films, therefore we needed to anneal deposited Ga₂O₃ films at the high temperatures of 850 and 950°C, the sapphire (Al₂O₃) substrates were used to dposit the Ga₂O₃ films [11]. Next, n&k analyzer was used to measure the optical energy bandgaps and the transmittance spectra of un-annealed and annealed Ga₂O₃ films, the transmission spectra of un-annealed and annealed Ga₂O₃ films were measured in the wavelength 2range of 300–800 nm. The thickness of deposited Ga₂O₃ films was controlled at approximately 150 nm by controlling the deposition time. The XRD pattern was used to analyze the crystalline phase of un-annealed and annealed Ga₂O₃ films. A field emission scanning electron microscope (FESEM) was used to observe the surface morphology and to confirm the thickness of deposited Ga₂O₃ film.

3. Results

There are six differently crystalline phases existing in the Ga₂O₃, including α , β , γ , δ , ε , and κ phases [12]. Playford et al. used a low-cost liquid-phase deposition (LPD) method to prepare the Ga₂O₃ precursor and they found that all the γ -Ga₂O₃, δ -Ga₂O₃, ε -Ga₂O₃, and κ -Ga₂O₃ were intermediate phases and they were unstable as the temperature is raised. For example, δ -Ga₂O₃ phase was transformed into ε -Ga₂O₃ phase at temperature higher than 400 °C; γ -Ga₂O₃, ε -Ga₂O₃, κ -Ga₂O₃, and α -Ga₂O₃ phases were transformed into β -Ga₂O₃ phase as the temperatures are higher than 550 °C, 500 °C, and 700 °C, respectively. Thus, as compared with those results of Playford et al., annealed Ga₂O₃ films had different results. XRD patterns of un-annealed Ga₂O₃ films and 850 °C- and 950 °C-annealed Ga₂O₃ films are show in Figure 1 as a function of annealing temperature. As Figure 1 shows, no apparent diffraction peak was observed in un-annealed Ga₂O₃ film, this results suggests that un-annealed Ga₂O₃ film was amorphous phase rather than other crystalline phase. Figure 1 also shows that the different diffraction peaks were presented in 850 °C- and 950 °C-annealed Ga₂O₃ films. When the annealing temperature was 850 °C, the mainly crystalline phase was the ε -Ga₂O₃ phase, and the β -Ga₂O₃ phase was also observed; when the annealing temperature was raised to 950 °C, the only crystalline phase was the the β -Ga₂O₃ phase, the ε -Ga₂O₃ phase was not observed. As-deposited Ga₂O₃ films possess mostly amorphous phase and they can be transformed into polycrystalline β -Ga₂O₃ phase after annealing treatment when the temperature was higher than 850 °C. However, the annealing treatment is a more helpful process to improve the crystal qualities of Ga₂O₃ films.

AFM Applied Functional Materials

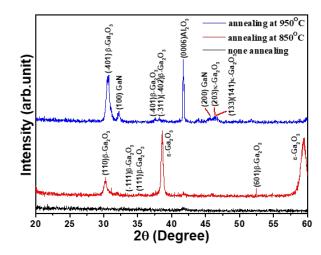


Figure 1. XRD patterns of Ga₂O₃ films as a function of annealing temperature.

Figures 2(a)-(c) show the surface observations of Ga_2O_3 films as a function of annealing temperature, all the surfaces of unannealed and annealed Ga_2O_3 films present a nanocrystalline structure and revealled a smooth and densified structure. As the annealing temperatures of Ga_2O_3 films raised from RT to 850 °C and 950 °C, as the surface morphologies in Figures 2(a), 2(b), and 2(c) show, the morphologies and grain sizes of Ga_2O_3 films had different results as the annealing temperature was raised. The crystallite sizes of Ga_2O_3 films were not observed in unannealed Ga_2O_3 film and they were really observed in the 850 °C- and 950 °Cannealed Ga_2O_3 films. These results in Figure1 and Figsure 2(a)-2(c) have proven that the annealing temperature has large effect on the surface morphologies and crystallization of Ga_2O_3 films and then it has large effect on the optical properties of Ga_2O_3 films. These results presented in Figure 2 suggest that as annealing temperature raised, the Ga_2O_3 film had the better crystallinity, which matched the variation of XRD patterns presented at Figure 1.

Even the crystallite sizes were observed in the 850 °C- and 950 °C-annealed Ga_2O_3 films, their sizes were not easily to be measured from the observed SEM micrographs. Therfore, we used the Scherrer formula to calculate the crystallite sizes of 850 °Cand 950 °C-annealed Ga_2O_3 films [13], the average particle sizes were 17.8 and 21.4 nm as the annealing temperatures were 850 °C and 950 °C, respectively. The results in Figure (1) and Figure (2) prove again that the annealing temperature has large effects on the crystalline phases and the average particle sizes of Ga_2O_3 films. Thus, we prove again that the annealing temperature will have large effect on the opticall properties of Ga_2O_3 films, that is proven in the following paragraphs. The cross-sectional thickness of deposited Ga_2O_3 film was also observed and the result was shown in Figure 2(d), which shows the thickness of deposited Ga_2O_3 film was about 155 nm, and all the thicknesses of un-annealed and annealed Ga_2O_3 films were in the ranges of 148~158 nm.

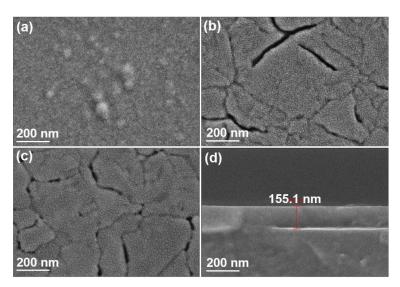


Figure 2. SEM micgrgraphs of Ga₂O₃ films (a) un-annealed, (b) annealed at 850 °C, (c) annealed at 950 °C, and (d) cross-sectional observation.

AFM 2021, Vol 1, Issue 1, 25-30, https://doi.org/10.35745/afm2021v01.01.0004

When n&k analyzer was directly used to measure the optical energy bandgaps of un-annealed Ga₂O₃ film and 850°C- and 950°C-annealed Ga₂O₃ films, the measured values were 2.99, 4.86, and 5.71 eV, respectively. These results suggest that the optical energy bandgaps of un-annealed and annealed Ga₂O₃ films increased with annealing temperature. These results also suggest that the optical energy bandgap of β -Ga₂O₃ phase is larger than those of amphorous Ga₂O₃ phase and ϵ -Ga₂O₃ phase. Transmittance spectra of un-annealed, 850 °C-annealed, and 950 °C-annealed Ga₂O₃ films are shown in Figure 3(a), Figure 4(a), and Figure 5(a), respectively. All the transmittance ratios of un-annealed and annealed Ga₂O₃ films were very low because the sapphire substrate are one kind of material with low transparency. The saturation transmittance ratios of un-annealed Ga₂O₃ films. When the transmission spectra shown in Figure 3(a), Figure 4(a), and Figure 5(a) were approximately 12%, which suggests the annealing temperature had no apparent effect on the maximum transmittance ratio of un-annealed Ga₂O₃ films. When the transmission spectra shown in Figure 3(a), Figure 4(a), and Figure 5(a) were compared, we found that for for un-annealed Ga₂O₃ film, the transmittance ratio increased slightly and reached the saturation value at about wavelength of approximately 600 nm.

Thus, for 850 °C- and 950 °C- annealed Ga₂O₃ films, the transmittance ratio increased critically in a narrow range of wavelength. These results suggest that un-annealed Ga₂O₃ film has many defects, which will decrease the transmittance ratio at lower wavelengths of 300-500 nm, and crystallized Ga₂O₃ films have less defects and they have apparent absorption edges. We also had found that when the annealing temperature raised from RT to 950°C, the extrapolated straight lines at transmittance ratios of 0% and the absorption edges and of Ga₂O₃ films had been shifted to the lower wavelengths. The absorption edges and of Ga₂O₃ films shown in Figure 3(a), Figure 4(a), and Figure 5(a) were 248.5, 220.1, and 202.1 nm. When we used 1240 nm to divide by the 248.5, 220.1, and 202.1 nm, the optical energy bandgaps were 4.99 (in the range of 4.92~5.05), 5.63 (5.54~5.74), and 6.14 (6.06~6.19) eV, respectively. These results prove again that the optical energy bandgap of β -Ga₂O₃ phase is larger than those of amphorous Ga₂O₃ phase and ϵ -Ga₂O₃ phase.

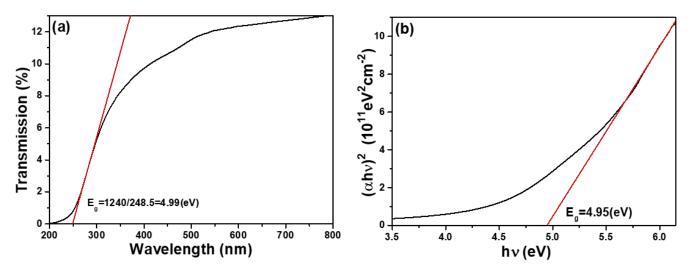


Figure 3. (a) Transmittance spectrum and (b) $(\alpha h v)^2$ vs hv (energy) plots of un-annealed Ga₂O₃ film.

The following two equations could be used to calculate the relationship of optical energy bandgap (E_g) and absorption coefficient (α) of un-annealed and annealed Ga₂O₃ films: [14,15]

$$T = (1 - R)^2 \exp(-\alpha d)$$
 $\alpha hv = C (hv - E_g)^{1/2}$ (1)

where *T*, *R*, *C*, *hv*, and *d* are transmittance ratio, reflectance ratio, a constant, light energy, and thickness of measured film, respectively. The curves of energy value (*hv*) against the $(ahv)^2$ values are calculated and plotted according to Eq. (1), and the extrapolated straight lines were used to measure the optical energy bandgap of un-annealed and annealed Ga₂O₃ films. The results of un-annealed, 850 °C-annealed, and 950 °C-annealed Ga₂O₃ films are shown in Figure 3(b), Figure 4(b), and Figure 5(b), respectively. When the annealing temperatures were RT, 850 °C, and 950 °C, the optical energy bandgaps of un-annealed, 850 °C- annealed Ga₂O₃ films were 4.95 (in the range of 4.88~5.02), 5.27 (5.21~5.33), and 5.52 (5.45~5.58) eV, respectively. However, we found that no matter which method is used, the optical energy bandgaps of Ga₂O₃ films increased with annealing temperatures. These results prove again that the optical energy bandgap of β-Ga₂O₃ phase is larger than those of amphorous Ga₂O₃ phase and ε-Ga₂O₃ phase, even the the optical energy bandgaps of Ga₂O₃ films measured in this study are larger than the measured results in other researches. These results in this study also show an important conclusion that the

optical energy bandgaps of β -Ga₂O₃ films using the extrapolated straight lines of the plotted curves of energy value (*hv*) against the $(\alpha hv)^2$ values are more close to other researches.

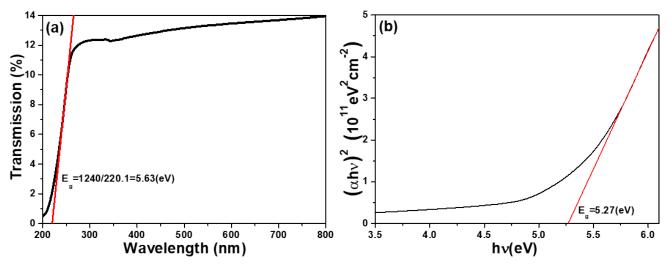


Figure 4. (a) Transmittance spectrum and (b) $(\alpha h \nu)^2$ vs h ν (energy) plots of 850 °C-annealed Ga₂O₃ film.

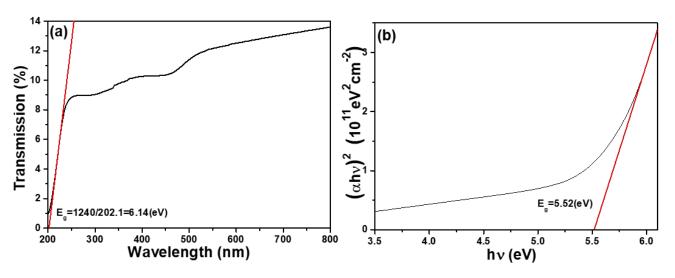


Figure 5. (a) Transmittance spectrum and (b) $(\alpha h v)^2$ vs hv (energy) plots of 950 °C-annealed Ga₂O₃ film.

5. Conclusions

In this study, three methods were successfully investigated to find the optical energy bandgaps of un-annealed Ga₂O₃ film and 850 °C- and 950 °C-annealed Ga₂O₃ films. When n&k analyzer was directly used to measure the optical energy bandgaps of un-annealed Ga₂O₃ film and 850 °C- and 950 °C-annealed Ga₂O₃ films, the measured values were 2.99, 4.86, and 5.71 eV; When the cut wavelength at the zero transmittance ratio of the extrapolated straight line according the slope of the absorption edge was used, the optical energy bandgaps of un-annealed Ga₂O₃ film and 850 °C- and 950 °C- and 950 °C- and 950 °C- annealed Ga₂O₃ films were 4.99 (in the range of 4.92~5.05), 5.63 (5.54~5.74), and 6.14 (6.06~6.19) eV; When the extrapolated straight lines of the plotted curves of energy value (hv) against the (α hv)² values were used to measure the optical energy bandgaps of un-annealed Ga₂O₃ film and 850 °C- and 950 °C- annealed Ga₂O₃ films, the results were 4.95 (in the range of 4.88~5.02), 5.27 (5.21~5.33), and 5.52 (5.45~5.58) eV, respectively.

Author Contributions: For research articles with several authors, a short paragraph specifying their individual contributions must be provided. Conceptualization, T.Y. Lin, C.F. Yang, and S. Wei; methodology, T.Y. Lin, S.Y. Han, C.Y. Huang, C.F. Yang, and S. Wei; formal analysis, T.Y. Lin, S.Y. Han, and C.F. Yang; investigation, T.Y. Lin, C.F. Yang, and S. Wei; resources, C.F. Yang and S. Wei; data curation, T.Y. Lin, S.Y. Han, and C.F. Yang; writing—original draft preparation, T.Y. Lin, C.Y. Huang, C.F. Yang, and S. Wei; writing—review and editing, C.F. Yang and S. Wei; visualization, T.Y. Lin, S.Y. Han, and C.F. Yang; supervision, T.Y. Lin, S.Y. Huang, C.F. Yang, and S. Wei; writing—review and editing, C.F. Yang and S. Wei; visualization, T.Y. Lin, S.Y. Han, and C.F. Yang; supervision, T.Y. Lin, S.Y. Han, C.F. Yang, and S. Wei; writing—review and editing, C.F. Yang and S. Wei; visualization, T.Y. Lin, S.Y. Han, and C.F. Yang; supervision, T.Y. Lin, S.Y. Han, C.F. Yang, and S. Wei; visualization, T.Y. Lin, S.Y. Han, and C.F. Yang; supervision, T.Y. Lin, S.Y. Han, C.F. Yang, and S. Wei; visualization, T.Y. Lin, S.Y. Han, and C.F. Yang; supervision, T.Y. Lin, S.Y. Han, C.F. Yang, and S. Wei?

Acknowledgments: In this section, you can acknowledge any support given which is not covered by the author's contribution or funding sections. This may include administrative and technical support, or donations in kind (e.g., materials used for experiments).

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Higashiwaki, M.; Murakami, H.; Kumagai, Y.; Kuramata, A. Current status of Ga₂O₃ power devices. Jpn. J. Appl. Phys 2019, 55, 1202A1.
- 2. He, H.; Orlando, R.; Blanco, M.A.; Pandey, R.; Amzallag, E.; Baraille, I.; Rérat, M. First-principles study of the structural, electronic, and optical properties of Ga₂O₃ in its monoclinic and hexagonal phases. *Phys. Rev. B* **2006**, *74*, 195123.
- 3. Onuma, T.; Saito, S.; Sasaki, K.; Masui, T.; Yamaguchi, T.; Honda, T.; Higashiwaki, M. Valence band ordering in β-Ga₂O₃ studied by polarized transmittance and reflectance spectroscopy. *Jpn. J. Appl. Phys* **2015**, *54*, 112601.
- 4. R. Roy, V. G. Hill, and E. F. Osborn. Polymorphism of Ga₂O₃ and the System Ga₂O₃—H₂O. J. Am. Chem. Soc 1952, 74, pp. 719-722.
- Hao, S.J.; Hetzl, M.; Schuster, F.; Danielewicz, K.; Bergmaier, A.; Dollinger, G.; Sai, Q. L.; Xia, C. T.; Hoffmann, T.; Wiesinger, M.; Matich, S.; Aigner, W.; Stutzmann, M. Growth and characterization of β-Ga₂O₃ thin films on different substrates. *J. Appl. Phys* **2019**, *125*, 105701.
- 6. Winkler, N.; Wibowo, R. A.; Kautek, W.; Ligorio, G.; List-Kratochvil, E. J. W.; Dimopoulos, T. Nanocrystalline Ga₂O₃ films deposited by spray pyrolysis from water-based solutions on glass and TCO substrates. *J. Mater. Chem. C* **2019**, *7*, pp. 69-77.
- Wheeler, V.D; Nepal, N.; Boris, D.R.; Qadri, S. B.; Nyakiti, L. O.; Lang, A.; Koehler, A.; Foster, G.; Walton, S.G.; Eddy, C. R. Jr.; Meyer. D.J. Phase Control of Crystalline Ga₂O₃ Films by Plasma-Enhanced Atomic Layer Deposition. *Chem. Mater* 2020, *32*, pp. 1140–1152
- 8. Hsieh, Y.S.; Li, C.Y.; Lin, C.M.; Wang, N.F.; Li, J.V.; M.P. Houng, M.P. Investigation of metal-insulator-semiconductor diode with alpha-Ga₂O₃ insulating layer by liquid phase deposition. *Thin Solid Films* **2019**, *685*, pp. 414–419.
- Thomas, S.R.; Adamopoulos, F.; Lin, Y.H.; Faber, H.; Sygellou, L.; Stratakis, E.; Pliatsikas, N.; Patsalas, P.A.; Anthopoulos, T.D. High electron mobility thin-film transistors based on Ga₂O₃ grown by atmospheric ultrasonic spray pyrolysis at low temperatures. *Appl. Phys. Lett.* 2014, 105, 092105.
- Mohamed, M.; Unger, I.; Janowitz, C.; Manzke, R.; Galazka, Z.; Uecker, R.; Fornari, R. The surface band structure of β-Ga₂O₃. *Journal of Physics: Conference Series* 2011, 286, 012027.
- Rafique, S.; Han, L.; Neal, A.T.; Mou, S.; Tadjer, M.J.; French, R.H.; Zhao, H.P. "Heteroepitaxy of N-type β-Ga₂O₃ thin films on sapphire substrate by low pressure chemical vapor deposition". *Appl. Phys. Lett.* **2016**, *109*, 132103.
- 12. Playford, H.Y.; Hannon, A.C.; Barney, E.R.; Walton, R.I. Structures of uncharacterised polymorphs of gallium oxide from total neutron diffraction. *Chem. Eur. J.*, **2013**, *19*, pp. 2803-2813.
- 13. Chen, C.C.; Wang, F.H.; Chang, S.C.; Yang, C.F. Using Oxygen Plasma Pretreatment to Enhance the Properties of F-Doped ZnO Films Prepared on Polyimide Substrates. *Materials* **2018**, *11*, p. 1501
- 14. Youn Du, Chih-Cheng Chen, Fang-Hsing Wang, Chun-Chi Lin, Yang, C.F. Effect of deposition temperature and F₂ flow rate on the characteristics of F-doped ZnO films. *Modern Phys. Lett. B* 2019, *33*, 1940040
- 15. Lin, Z.J.; Shih, M.C.; Wang, F.H.; Yang, C.F. Study on the properties of zinc oxide films with different CF4 flow rates. *Modern Phys. Lett. B* 2021, *35*, 2150204.

Publisher's Note: IIKII stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 The Author(s). Published with license by IIKII, Singapore. This is an Open Access article distributed under the terms of the <u>Creative Commons Attribution License</u> (CC BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.