

ISSN 2737-5323 Volume 1, Issue 1 https://www.iikii.com.sg/journal/AFM Applied Functional Materials

Article

Synthesis and Characteristics of Sr₃La(PO₄)₃:Eu³⁺ Phosphor with Luminescence in NIR Biological Window

Su-Hua Yang * and Wei-Jun Wang

Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Taiwan * Correspondence: shya@nkust.edu.tw; Tel.: +886-7-3814526

Received: Apr 30, 2021; Accepted: Jun 16, 2021; Published: Jul 31, 2021

Abstract: The $Sr_3La(PO_4)_3:Eu^{3+}$ (SLP: Eu^{3+}) phosphor was prepared with the coprecipitation method, which emited red visible-light along with a near-infrared (NIR) luminescence in the biological window region. The influence of synthesis temperature and Eu^{3+} doping concentration on the characteristics of the phosphor was discussed. The optimal crystallinity was obtained when the phosphor was doped with 0.7 mol% of Eu^{3+} and annealed at 1200 °C for 2 h. The particle size was approximately 1 μ m. As compared with the SLP:0.01 Eu^{3+} , the photoluminescence intensity of the SLP:0.07 Eu^{3+} increased by 4.95-fold at wavelength of 615 nm and 3.97fold at 705 nm. The red SLP: Eu^{3+} phosphor with a high NIR emission is a potential candidate material for bio-image and bio-sensor applications.

Keywords: Phosphor, Near-infrared luminescence, Biological window, Coprecipitation

1. Introduction

Eulytite-type orthophosphates have attracted much attention as the host of phosphors, which have a general molecular formula of $M_3^I M^{II}(PO_4)_3$. The MI can be alkaline earth metals of Ca, Sr, Ba and Pb, and the MII are La, Y, Sc, Bi, Tb and In. Sr₃La(PO₄)₃ [1], Ba₃Y(PO₄)₃ [2], Sr₃Y(PO₄)₃ [3], Sr₃Gd(PO₄)₃ [4], and Ba₃La(PO₄)₃ [5] belong to the family of eulytite-type orthophosphates. These hosts doped with lanthanide activators usually exhibit excellent thermal stability and optical property.

For the red lanthanide activators, Eu^{3+} [6,7], Pr^{3+} [8], Sm^{3+} [9,10] are the most preferred materials. However, they show diverse luminescence characteristics. For the Pr^{3+} activator [11–13], a broad energy absorption band with a peak at wavelength approximately of 270 nm is measured, which is resulted from the inter-configurational transition of $4f^2 \rightarrow 4f^15d^1$. The electrons transit from the ³H₄ ground state to higher 4f levels of ³P₂, ¹l₆, ³P₁, ³P₀, ¹D₂ are also possible. When the Pr^{3+} ions are excited with a wavelwngth of 270 nm, a high luminescence at wavelength 632 nm caused by electron transition of ¹D₂ \rightarrow ³H⁴ is analyzed. The emission at wavelength 725 nm for electron transition from ¹D₂ \rightarrow ³H⁴ is relatively insignificant. For the Sm³⁺ activator [14–16], the energy absorption peaks are at wavelengths of 378, 402, 440, 468 and 481 nm, attributed to electron transitions of $^{6}H_{5/2} \rightarrow ^{6}P_{7/2}$, $^{6}H_{5/2} \rightarrow ^{4}G_{9/2}$, $^{6}H_{5/2} \rightarrow ^{4}I_{13/2}$, $^{6}H_{5/2} \rightarrow ^{4}I_{11/2}$, respectively. The maximum energy absorption peak is at 402 nm. The red Sm3+ emission shows the highest intensity at 604 nm according to the $^{4}G_{5/2} \rightarrow 6H7/2$ transition. The other emission peaks are at 567, 650, and 709 nm referred to the electron transitions from the $^{4}G_{5/2}$ to the $^{6}H_{5/2}$, $^{6}H_{9/2}$, and $^{6}H_{11/2}$, respectively.

Both Pr^{3+} and Sm^{3+} show red emission in the visible-light reion, but they exhibit low luminescence intensity in the near-infrared (NIR) region. In contrast, the Eu^{3+} activator can not only show a high red luminescence but also exhibit a NIR emission within the biowindow [17]. The phosphors with luminescence in the biowindow have high potential for bio-image and bio-sensor applications [18–22], In this study, the $Sr_3La(PO_4)_3$ (SLP) was used as host and the SLP: Eu^{3+} was synthesized with the coprecipitation method [23–25]. The characteristics of the red SLP: Eu^{3+} phosphor are discussed.

2. Materials and Methods

The coprecipitation method was used for the synthesis of the red SLP: Eu^{3+} phosphor. The source materials were Sr(NO₃)₂ (99%, Acros), La(NO₃)₃·6H₂O (99.9%, Alfa Aesar), (NH₄)₂HPO₄ (99%, Showa), Eu(NO₃)₃·6H₂O (99.9%, Alfa), and NH₄OH. First, the materials were weighed by the stoichiometric ratio. The concentration of Eu³⁺ was varied from 1 to 9 mol%. The Sr(NO₃)₂, La(NO₃)₃·6H₂O, and Eu(NO₃)₃·6H₂O were dissolved in deionized (DI) and stirred to form a blended soultion. The (NH₄)₂HPO₄ was also dissolved with DI water. These solutions were mixed and used as the precursor solution. After that, the NH₄OH was dripped

4

into the precursor solution. The precipitation took place when a pH value of 6 was achieved. Subsequently, the obtained precursor was centrifuged, washed, and dried at 120 °C for 2 h. Finally, the precursor powder was annealed at 1000–1300 °C for 2 h.

The X-ray diffraction (XRD, SIEMENS D5000) and field-emission scanning electron microscopy (FESEM, JEOL JSM-6330 TF) were used for the analysis of the crystallinities and morphologies of the phosphors. A fluorescence spectrophotometer (Hitachi F-7000) was used to measure the energy absorption and emission characteristics of the phosphors. The photoluminescence (PL) and PL excitation (PLE) spectra were analyzed at the excitation wavelength (λ_{ex}) and monitored wavelength (λ_{em}) of 394 and 615 nm, respectively.

3. Results and Disscussion

The characteristics of the red SLP: Eu^{3+} phosphor was optimized via the variation of the annealing temperature and the doping concentration of the Eu^{3+} . Figure 1 shows the XRD patterns of SLP: Eu^{3+} synthesized at 1000–1300 °C. It is observed that when the synthesis temperature was lower than 1000 °C, the SLP phase was not synthesized completely. The SLP phase was obtained when the synthesis temperature was higher than 1100 °C. The XRD pattern of SLP: Eu^{3+} was consistent with the standard pattern of JCPDS No. 29-1306 and no miscellaneous phases were developed. The as-prepared SLP: Eu^{3+} had a cubic structure, the dominant crystal plane was (310) [26]. The particle size of phosphor was increased from 1 to 2 µm when the synthesis temperature was increased from 1000 to 1300 °C, as shown in Figure 2.

Figure 1. XRD patterns of SLP:0.07Eu³⁺ synthesized at 1000–1300 °C for 2 h.

Figure 2. SEM images of SLP:0.07Eu³⁺ synthesized at 1000–1300 °C for 2 h. (a) 1000 °C; (b) 1100 °C; (c) 1200 °C; (d) 1300 °C.

AFM 2021, Vol 1, Issue 1, 3-8, https://doi.org/10.35745/afm2021v01.01.0002

As it shown in Figure 1 that the crystallization of phosphor was improved with the increase of synthesis temperature. Thus, the synthesis temperature significantly altered with the energy absorption and emission of the phosphor. As compared with the phosphor prepared at 1000 °C, the PLE intensity at wavelength of 394 nm was enhanced by 2.17-, 2.58-, and 2.59-fold and the PL intensity at 615 nm was increased by 1.52-, 1.75-, and 1.80-fold when synthesis temperature was set at 1000 °C, 1100 °C, 1200 °C, and 1300 °C, respectively, as observed from Figure 3. Herein, the 394 nm was the wavelength of the maximum energy absorption peak, attributed to the electron transition of ${}^7F_0 \rightarrow {}^5L_6$ in Eu³⁺, and the 615 nm was the highest energy emission peak, which was resulted from the electron transition of ${}^5D_0 \rightarrow {}^7F_2$. The phosphor prepared at 1200 °C and 1300 °C have the same PL intensity, while a larger particle size was synthesized at 1300 °C.

Figure 3. (a) PLE and (b) PL intensity ratios of SLP:0.07Eu³⁺ synthesized at 1000–1300 °C for 2 h.

When 1–9 mol% of Eu³⁺ was doped in the SLP, no new phases were developed. The XRD analysis indicated that the smallest value of full width at half maximum (FWHM) of XRD and the optimal crystallinity of SLP:Eu³⁺ was obtained when 7 mol% of Eu³⁺ was doped, as listed in Table 1. In the SLP:0.07 Eu³⁺, the atomic composition of O, P, Sr, La, and Eu, analyzed using energy dispersive x-ray spectrometer (EDS), were 66.56, 11.38, 15.76, 5.08, and 1.22 at%, respectively, as listed in Table 2. Clearly, the SLP:0.07Eu³⁺ with stoichiometric ratio was syntheized. The Eu³⁺ was doped into the SLP crystal and formed a solid solution. The elements that exist within the SLP:0.07Eu³⁺ were further identified using the x-ray photoelectron spectrcopy (XPS), as shown in Figure 4. The elements of O, P, Sr, La, and Eu were analyzed. For O 1s, which showed a broad peak at binding energy of 530.5–532.5 eV. The La 3d peak was located at 830–837 eV, and the Sr 3d, P 2p, and Eu 4d peaks were at 129–138 eV [26,27].

Eu ³⁺ Concentration (mol%)	FWHM XRD (Δ2θ)
1	0.21
3	0.19
5	0.16
7	0.16
9	0.22

Table 1. FWHM of XRD for phosphor synthesized with different Eu³⁺ concentrations.

Tabe 2. Element composition of SLP:0.07Eu $^{3+}$ phosphor synthesized 1200 $^{\circ}\mathrm{C}$ for 2 h.

Element	Atomic Ratio (%)
О	66.56
Р	11.38
Sr	15.76
La	5.08
Eu	1.22

AFRM Applied Functional Materials

Figure 4. XPS spectrum of SLP:0.07Eu³⁺ phosphor synthesized 1200 °C for 2 h.

The energy absorption and luminescence of SLP: Eu^{3+} varied with the doping concentration of Eu^{3+} . Figure 5 shows the PLE and PL spectra of the phosphors. A broad band with a peak at 271 nm was referred to the $O^{2-} \rightarrow Eu^{3+}$ charge-transfer band (CTB) absorption [28]. The PLE peaks at 362, 383, 394, 363, and 465 nm were attributed to the electron transitions from the ⁷F₀ to the ⁵D₄, ⁵L₇, ⁵L₆, ⁵D₃, and ⁵D₂ energy levels, respectively. The electron transitions through the ⁵D₀ \rightarrow ⁷F₁, ⁵D₀ \rightarrow ⁷F₃, and ⁵D₀ \rightarrow ⁷F₄ exhibited red to NIR luminescence with peak wavelengths at 593, 615, 656, and 705 nm, respectively. The PL intensity was enhanced by the increase of Eu^{3+} doping concentration, as shown in Figure 6. The maximun PL intensity was obtained when a 7 mol% Eu^{3+} was doped. However, when a higher Eu^{3+} concentration of 9 mol% was doped, the PL intensity was increased because of the effect of concentration quenching. As compared with the SLP:0.01Eu³⁺, the PL intensity of SLP:0.07Eu³⁺ was increased by 4.95-fold at wavelength 615 nm and 3.97-fold at 705 nm. High NIR luminescence was obtained. The phosphor with high luminescence in the NIR biowindow has the potential for bio-image and biosensor applications.

Figure 5. PLfE and PL spectra of SLP:0.07Eu³⁺ phosphor.

Figure 6. (a) PL spectra and (b) normalized PL intensities at wavelengths 615 and 705 nm for SLP: Eu^{3+} phosphors synthesized with different Eu^{3+} concentrations.

AFM 2021, Vol 1, Issue 1, 3-8, https://doi.org/10.35745/afm2021v01.01.0002

4. Conclusions

7

The characteristics of red SLP: Eu^{3+} phosphors prepared with the coprecipitation method are discussed. The crystallinity and luminescence properties of phosphors altered significantly with the variations of synthesis temperature and doping concentration of Eu^{3+} . The maximum PLE and PL intensities were obtained when the phosphor was doped with 7 mol% Eu^{3+} and annealed at 1200°C for 2h. The red SLP: Eu^{3+} shows high PL intensity both in visible-light and NIR-biowindow regions, with corresponding emission peaks at wavelengths of 615 and 705 nm, respectively. The SLP: Eu^{3+} phosphor can be used for bio-image and bio-sensor applications.

Author Contributions: conceptualization, S. H. Yang and W. J. Wang; methodology, S. H. Yang and W. J. Wang; validation, S. H. Yang and W. J. Wang; investigation, S. H. Yang and W. J. Wang; resources, S. H. Yang; data curation, S. H. Yang and W. J. Wang; writing—original draft preparation, S. H. Yang and W. J. Wang; writing—review and editing, S. H. Yang; visualization, S. H. Yang. Authorship must be limited to those who have contributed substantially to the work reported.

Funding: This research did not receive external funding.

Acknowledgments: The authors would like to thank the Ministry of Science and Technology of the Republic of China, Taiwan, for financially supporting this research under contract No. MOST 109-2221-E-992-087.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Wang, Z.; Lou, S; Li, P. Single phase tunable warm white-light-emitting Sr3La(PO4)3:Eu²⁺, Sm³⁺ phosphor for white LEDs. *Opt. Mater. Express* 2016, 6, 114–124. doi:10.1364/OME.6.000114
- Guo, N.; Jia, C.; Li, J.; Zhao, Y.; Ouyang, R.; Lü, W. Color tuning and energy transfer in Eu²⁺/Mn²⁺-doped Ba₃Y(PO₄)₃ eulytite-type orthophosphate phosphors. *RSC Adv.* 2015, 5, 46517–46524. doi:10.1039/C5RA06347G
- 3. Liu, W.; Wang, X.; Zhu, Q.; Li, X.; Sun, X.; Li, J.-G. Upconversion luminescence and favorable temperature sensing performance of eulytite-type $Sr_3Y(PO_4)_3$: Yb^{3+}/Ln^{3+} phosphors (Ln = Ho, Er, Tm). *Sci. Technol. Adv. Mater.* **2019**, *20*, 949–963. doi:10.1080/14686996.2019.1659090
- Fan, B.; Zhao, W.; Han. L. Eu³⁺ co-doped Sr3Gd(PO4)3:Dy³⁺ phosphors: luminescence properties and color-tunable white-light emission for NUV-WLEDs. *Appl. Phys. A* 2020, *126*, 1–10. doi:10.1007/s00339-020-3444-5
- Shi, Q.; Huang, Y.; Ivanovskikh, K.V.; Pustovarov, V.A. Luminescence properties and host sensitization study of Ba₃La(PO₄)₃:Ce³⁺ with (V)UV and X-ray excitation. *J. Alloys Compd.* 2020, 817, 152704. doi:10.1016/j.jallcom.2019.152704
- 6. Wang, Q.; Huo, J.; Zheng, Y.; Pang, S.; He, Z. Design of red/green emissive lanthanide activated nano-materials by supersonic and microwave co-irradiations. *Opt. Mater.* **2013**, *35*, 1146–1150. doi:10.1016/j.optmat.2012.12.026
- 7. Zheng, X.; Kankala, R.K.; Liu, C.-G.; Wang, S.-B.; Chen, A.-Z.; Zhang, Y. Lanthanides-doped near-infrared active upconversion nanocrystals: Upconversion mechanisms and synthesis. *Coord. Chem. Rev.* **2021**, *438*, 213870. doi:10.1016/j.ccr.2021.213870
- Thoř, T.; Rubešová, K.; Jakeš, V.; Cajzl, J.; Nádherný, L; Mikolášová, D.; Kučerková, R. Lanthanide-doped Lu₂O₃ phosphors and scintillators with green-to-red emission. *J. Lumin.* 2019, 215, 116647. doi:10.1016/j.jlumin.2019.116647
- Shui, X.; Zou, C.; Zhang, W.; Bao, C.; Huang, Y. Effect of M³⁺ (M = Bi, Al) co-doping on the luminescence enhancement of Ca2ZnSi2O7:Sm³⁺ orange-red-emitting phosphors. *Ceram. Int.* 2021, 47, 8228–8235. doi:10.1016/j.ceramint.2020.11.182
- Li, Y.; Jiang, J.; Lv, Q.; Shao, B.; Wang, C.; Zhu. G. Structural and spectroscopic features of high color purity red-emitting phosphors Sr₁₉Mg₂(PO₄)₁₄: Re³⁺ (Re³⁺ = Eu³⁺, Sm³⁺, Pr³⁺). Spectrochim. Acta, Part A **2021**, 251, 119417. doi:10.1016/j.saa.2020.119417
- 11. Lei, Z.; Zhang, W.; Li, B.; Guan, G.; Huang, X.; Peng, X.; Zou, R.; Hu, J. A full-spectrum-absorption from nickel sulphide nanoparticles for efficient NIR-II window photothermal therapy. *Nanoscale* **2019**, *11*, 20161–20170. doi:10.1039/c9nr04005f
- 12. Sun, D.; Zhang, L.; Hao, Z.; Hao, Z.; Wu, H.; Wu, H., Luo, Y.; Yang, L.; Liu, F.; Zhang, J. Multi-peaked broad-band red phosphor Y₃Si₆N11:Pr³⁺ for white LEDs and temperature sensing. *Dalton Trans.* **2020**, *49*, 17779–17785. doi:10.1039/d0dt03532g
- Yan, G.; Zhang, W.; Huang, Y.; Zhang, P.; Li, J. Luminescence enhancement for Y₂Mo₄O₁₅:Pr³⁺ red-emitting phosphors by Tb³⁺ co-doping. J. Mater. Sci.: Mater. Electron. 2019, 30, 14589–14599. doi:10.1007/s10854-019-01831-x
- 14. Wu, L.; Bai, Y.; Wu, L.; Yi, H.; Kong, Y.; Zhang, Y.; Xu, J. Sm³⁺ and Eu³⁺ codoped SrBi₂B₂O₇: a red-emitting phosphor with improved thermal stability. *RSC Adv.* **2017**, 7, 1146–1153. doi:10.1039/c6ra26752a
- 15. We, C.; Xu, D.; Yang, Z.; Li, J.; Chen, X.; Li, X.; Sun, J. A novel orange-red emitting phosphor Sr₂LuTaO₆:Sm³⁺ for WLEDs. *J. Mater. Sci.: Mater. Electron.* **2019**, *30*, 9303–9310. doi:10.1007/s10854-019-01260-w
- Bednářová, Z.; Kalina, J.; Hájek, O.; Sáňka, M.; Komprdová, K. Spatial distribution and risk assessment of metals in agricultural soils. *Geoderma* 2016, 284, 113–121. doi:10.1016/j.geoderma.2016.08.021
- 17. Lei, Z.; Zhang, W.; Li, B.; Guan, G.; Huang, X. A full-spectrum-absorption from nickel sulphide nanoparticles for efficient NIR-II window

photothermal therapy. Nanoscale 2019, 11, 20161-20170. doi:10.1039/c9nr04005f

- Yang, H.; Zhao, W.; Lin, X.; Liao, Z.; Nie, Z.; Luo, L.; Zhang, W.; Hu, Z.; Zhong, J. Hundreds of times of photo-stimulation with low energy light as a new reused bio-imaging phosphor from Cr³⁺, Si⁴⁺-doped Y₃Ga₅O₁₂. J. Lumin. 2020, 219, 116871. doi:10.1016/j.jlumin.2019.116871
- Taktak, O.; Souha, H.; Kammoun. S. Optical properties of the phosphors Zn₂SnO₄:Cr³⁺ with near-infrared long-persistence phosphorescence for bio-imaging applications. *J. Lumin.* 2020, *228*, 117563. doi:10.1016/j.jlumin.2020.117563
- Lyu, T.; Dorenbos, P. Designing thermally stimulated 1.06 μm Nd³⁺ emission for the second bioimaging window demonstrated by energy transfer from Bi³⁺ in La-, Gd-, Y-, and LuPO4. *Chem. Eng. J.* 2019, *372*, 978–991. doi:10.1016/j.cej.2019.04.125
- 21. Yang, J.; Zhao, Y.; Meng, Y.; Zhu, H.; Yan, D.; Liu, C.; Xu, C.; Zhang, H.; Xu, L.; Li, Y.; Liu, Y. Irradiation-free photodynamic therapy *in vivo* induced by enhanced deep red afterglow within NIR-I bio-window. *Chem. Eng. J.* **2020**, *387*, 124067. doi:10.1016/j.cej.2020.124067
- Xu, W.; Zhao, D.; Zheng, L.; Zhang, Z.; Cao, W. NIR to NIR luminescence thermometry in core/multishells-structured nanoparticles operating in the biological window. J. Lumin. 2020, 225, 117358. doi:10.1016/j.jlumin.2020.117358
- 23. Rivera-Enríquez, C.E.; Fern'andez-Osorio, A.L. Synthesis of YVO₄:Eu³⁺ nanophosphors by the chemical coprecipitation method at room temperature. *J. Lumin.* **2021**, *236*, 118110.
- 24. Kee, C.C.; Ang, B.C.; Metselaar, H.S.C. Synthesis of europium-doped calcium silicate hydrate via hydrothermal and coprecipitation method. *Ceram. Int.* **2021**, *47*, 4803–4812. doi:10.1016/j.ceramint.2020.10.050
- 25. Smara, Z.; Cheroura, Y. Boyer, D.; Potdevin, A.; Chafa, A.; Ziane, O.; Mahiou, R. Energy transfer and luminescent properties of Eu³⁺, Tb³⁺, Eu³⁺-Yb³⁺ and Tb³⁺-Yb³⁺ doped α-NaYF4 nanophosphors prepared by coprecipitation route. *Opt. Mater.* 2020, *104*, 109932. doi:10.1016/j.optmat.2020.109932
- Yang, S.-H.; Wang, W.-W.; Lee, Y.-C.; Chiang, P.-J. Luminescence enhancement of spherical Sr₃La(PO₄)₃:Eu³⁺ red nanophosphor with coreeshell configuration and added sensitizer for low-voltage field-emission lamp. *J. Alloys Compd.* 2019, 783, 785–792. doi:10.1016/j.jallcom.2018.12.270
- Stypczyńska, A.; Nixon, T.; Mason, N. X-ray radiation of poly-L-arginine hydrochloride and multilayered DNA-coatings. *Eur. Phys. J. D* 2014, 68, 1–10. doi:10.1140/epjd/e2014-40845-8

Publisher's Note: IIKII stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 The Author(s). Published with license by IIKII, Singapore. This is an Open Access article distributed under the terms of the <u>Creative Commons Attribution License</u> (CC BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.