
 ISSN 2737-534X
Volume 1, Issue 1

https://www.iikii.com.sg/journal/IJCMB
International Journal of Clinical Medicine and Bioengineering

IJCMB 2021, Vol 1, Issue 1, 12–24, https://doi.org/10.35745/ijcmb2021v01.01.0003

Article

A Cortical Learning Machine for Learning Real-Valued and
Ranked Data

James Ting-Ho Lo 1,* and Bryce Mackey-Williams Carey 2
1 Department of Mathematics and Statistics, University of Maryland Baltimore County, USA; jameslo@umbc.edu

2 Amazon Web Services, Amazon.com, USA; bcarey2@umbc.edu
* Correspondence: jameslo@umbc.edu; Tel.: 1-410-455-2432

Received: Aug 26, 2021; Accepted: Nov 30, 2021; Published: Dec 30, 2021

Abstract: The cortical learning machine (CLM) introduced in [1-3] is a low-order computational model of the neocortex. It has the
real-time, photogragraphic, unsupervised, and hierarchical learning capabilities, which existing learning machines such as the
multilayer perceptron and convolutional neural network do not have. The CLM is a network of processing units (PUs) each
comprising novel computational models of dendrites (for encoding), synapses (for storing code covariance matrices),
spiking/nonspiking somas (for evaluating empirical probabilities and generating spikes), and unsupervised/supervised Hebbian
learning schemes. In this paper, the masking matrix in the CLM in [1-3] is generalized to enable the CLM to learn ranked and real-
valued data in the form of the binary numbers and unary (thermometer) codes. The general masking matrix assigns weights to the
bits in the binary and unary code to reflect their relative significances. Numerical examples are provided to illustrate that a single
PU with the general masking matrix is a pattern recognizer with an efficacy comparable to those of leading statistical and machine
learning methods, showing the potential of CLMs with multiple PUs especially in consideration of the aforementioned capabilities
of the CLM.

Keywords: real-time learning; photographic learning; real-valued; ranked; masking matrix; neocortex; pattern recognition;
associative memory; unsupervised learning, hierarchical learning

1. Introduction

 The deep learning machines (DLMs) have been the most widely used type of learning method. As many applications as the
they have, the existing DLMs such as the multilayer perceptron (MLPs) and convolutional neural networks (CNNs) lack the
following learning capabilities, which if acquired in learning machines, are expected to greatly expand the range of applications of
learning machines:

1. Recursive learning: By recursive learning, we mean that upon the arrival of a piece of new data, the old knowledge already
learned is updated into new knowledge by learning only the piece of new data (without using the learned old data). Note that
this is not the case with a deep learning machines (DLM) such as the multilayer perceptron and convolutional neural network,
where the learned knowledge is stored as weights on the connections of the DLM. Whenever a piece of new data needs to be
learned, the DLM trained on old data must learn the new data and all the old data jointly from scratch. If a sequence of new
data keep coming in, the memory space of the DLM for storing the new knowledge as well as the old data, computational
complexity of learning, and sometime the size of the DLM (i.e., the number of layers and number of connections) must be
increased.

2. Unsupervised learning: Learning data without labels is called unsupervised learning. Labels are usually obtained by
handcrafting, which is often costly or impossible for a large number of such images rapidly in real time. The unsupervised
learning of the cortical learning machine (CLM) generates its own labels. When used consistently, these labels form a
vocabulary or a complement of a common vocabulary (e.g., English, Chinese, etc.) for the CLM. Whenever the handcrafted
labels are available, this self-generated vocabulary is translated into a common vocabulary by parts of the CLM called
interpreters.

3. Photographic learning: By photographic learning, we mean learning (a) without waiting for the labels to be handcrafted, (2)
without iteratively minimizing a training error criterion, (3) without cross validation on extra data (to avoid overfitting), and
(4) without repeated learning sessions to pick the best training results (to avoid nonglobal local-minima and saddle points).
We also mean that each piece of data can be learned and the knowledge in it can be used almost as soon as it arrives.
Photographic learning is enabled mainly by the above recursive learning and unsupervised learning.

13

IJCMB 2021, Vol 1, Issue 1, 12–24, https://doi.org/10.35745/ijcmb2021v01.01.0003

4. Hierarchical learning: Multiple whole or partial objects usually form a hierarchy in an image. Recognizing all the whole or
partial objects in the hierarchy is required for humans to see the relative locations and relative relations of the objects. Because
a DLM can learn an image only with a single label, to learn all the objects and partial objects in an image, each must be isolated
from others in the image and learned separately. The CLM learns all the objects or parial objects together and each is assigned
a label, handcrafted or self-generated, in their hierarchy in the image.

5. Real-time learning: Humans learn in real-time. The capabilities to perform the above recursive, unsupervised, photographic
and hierarchical learning are prerequisites for real-time learning. In addition, the computation involved must be performed in
real time. This requires the learning algorithm and the hardware implementing the algorithm to be effective to effect real-time
learning.

 Strictly speaking, biological plausibility of a learning machine does not guarantee it to be better than those without a
resemblance to the biological learning system. However, recall that the McCulloch-Pitts model of the neuron and layered network
structure in the neocortex led to the multilayer perceptron (MLP), and the hierarchical architecture and max pooling in the same are
essential to the generalization capability of the convolutional neural network (CNN). The MLP and CNN outperform all the other
learning machines such as Bayesian, decision tree, support vector machine, adaboosting, etc. that do not mimick the bio neural
networks. This superiority of learning machines with biological features to those without suggests that more biological features of
the brain might help develop future learning machines. After all, our brain (even the animal brain) is the only proven
“technology” that generates true “intelligence”. Many good learning machines with more features of the neocortex than the MLP
and CNN can be found in literature, for example, [1-8].
 A low-order model (LOM) of the biological neural networks in the neocortex was derived [1-3] from four neurobiological
postulates: 1) most neurons communicate by spike trains; 2) neural networks learn by the Hebbian rule; 3) dendrites and axons
perform computation; and 4) neural networks are hierarchical networks with feedback structures; and a creationist/evolutionary
postulate: 5) functions and features of neural networks and their components are mathematically ideal. The LOM explains how
biological neural networks (BNNs) encode, learn, memorize, recall and generalize, and thereby explains how the brain has the
aforementioned desirable capabilities as a learning machine at the neuronal level [1-3].

The LOM is a hierarchical multilayer network of processing units (PUs), each comprising novel models of dendrites (for
encoding), synapses (for storing code covariance matrices), spiking/nonspiking somas (for evaluating empirical probabilities and
generating spikes), unsupervised/supervised Hebbian learning schemes, and a masking matrix to represent interneuron connections
(maximal generalization). A PU is either an unsupervised PU (UPU) or a supervised PU (SPU) depending on whether the PU learns
without or with supervision. Almost all of these component models (except that of the dendritic trees) are supported in the
neurobiological literature. The LOM integrates these novel model components and expains how they encode, learn, memorize, recall
and generalize for the first time in neuroscience literature.

When used as a learning machine, the LOM is called a cortical learning machine (CLM). As a model of the biological neural
network in the neocortex which processes spikes, the CLM processes only binary data. Real-valued and ranked data must first be
converted into a binary form such as the standard binary numbers and the unary codes to be processed by the CLM. While the
standard binary number uses the smallest number of bits, the unary code keeps the Hamming distance between codes. Different
positions of the bits in a binary number and a unary code carry different significance. In this paper, the masking matrix in the CLM
[1-3] is generalized by assigning different weights to different positions of the bits for selecting different neuronal networkings of
the CLM. This generalization greatly improves the accuracy rates of the CLM in recognizing real-valued and ranked data.

Three numerical examples are provided to illustrate how a CLM with a single PU with the generalized masking matrix works
as a pattern recognizer for real-valued and ranked data. In each example, 10,000 CLMs are implemented by a 10-fold cross-
validation procedure on the given dataset. The average, maximum and minimum accuracy rate are reported for the 10,000 CLMs
with a single PU. Historical results by other pattern recognition methods following the 10-fold cross-validation procedure are used
for comparison. Nevertheless, the number of times for each of the other methods is performed in the historical results is much less
than 10,000. Besides, the accuracy rates of the learning methods are highly dependent on the hyperparameters selected for the

learning methods. Therefore, these historical and our experimental results can only provide a rough comparison.
With this understanding, we can only say that the accuracy rates of the CLMs are comparable to those of leading learning

methods on each of the iris classification, car evaluation, and congressional voting prediction datasets from the UCI Machine
Learning Repository [12], showing the potential of the CLM with multiple PUs. It is stressed here that the CLM has the unique
capabilities of real-time, photographic, unsupervises and hierarchical learning mentioned above.

The rest of the paper is organized as follows: In Section 2, the dendritic trees of the neurons in a PU is briefly explained. The
dendritic trees encode the inputs to the PU into orthogonal binary codes for the neurons. In Section 3, the supervised and

14

IJCMB 2021, Vol 1, Issue 1, 12–24, https://doi.org/10.35745/ijcmb2021v01.01.0003

unsupervised Hebbian learning rules with the dendritic codes are described. In Section 4, the general masking matrix is defined and
some identities that help reducing the computation of the masking matrix are mentioned. In the same section, the functions of the
synapses on the dentrites not masked are also stated. In Section 5, how the spiking and nonspiking somas transform the outputs from
the synapses into estimates of the labels of the inputs to the PU is explained in more detail. In Section 6, the dendritic trees, learning
rules, masking matrices, spiking/nonspiking somas are integrated into the unsupervised/supervised PU. In Section 7, a network of
unsupervised PUs serving as a clusterer and a network of supervised PUs serving as an interpreter are organized to enable the CLM
to learning without supervision all the time and to learn and generalize with supervision. In Section 8, the results of three numerical
experiments are provided before a brief conclustion in Section 9.

2. Encoding inputs to neurons

Dendritic trees use more than 60% of the energy consumed by the brain, occupy more than 99% of the surface of some neurons,
and are the largest component of neural tissue in volume. Yet, dendritic trees are missing in existing deep learning machines (DLMs),
including the CNN, and associative memories, overlooking a large proportion of the neuronal circuit.

A key feature of CLM is a novel model of the dendritic encoder: A dendritic encoder that inputs 𝑣𝑣𝜏𝜏 = [𝑣𝑣𝜏𝜏1 𝑣𝑣𝜏𝜏2 𝑣𝑣𝜏𝜏3]′
encodes it into the dendritic code 𝑣𝑣�𝜏𝜏 by the standard parity function 𝜙𝜙 as follows:

𝑣𝑣�𝜏𝜏 = [0 𝑣𝑣𝜏𝜏1 𝑣𝑣𝜏𝜏2 𝜙𝜙(𝑣𝑣𝜏𝜏2, 𝑣𝑣𝜏𝜏1) 𝑣𝑣𝜏𝜏3 𝜙𝜙(𝑣𝑣𝜏𝜏3, 𝑣𝑣𝜏𝜏1) 𝜙𝜙(𝑣𝑣𝜏𝜏3,𝑣𝑣𝜏𝜏2) 𝜙𝜙(𝑣𝑣𝜏𝜏3, 𝑣𝑣𝜏𝜏2, 𝑣𝑣𝜏𝜏1)]′

where 𝜙𝜙 is recursively defined by

 𝜙𝜙(𝑣𝑣𝜏𝜏2,𝑣𝑣𝜏𝜏1) = −2𝑣𝑣𝜏𝜏2𝑣𝑣𝜏𝜏1 + 𝑣𝑣𝜏𝜏2 + 𝑣𝑣𝜏𝜏1 (1)
 𝜙𝜙(𝑣𝑣𝜏𝜏3, 𝑣𝑣𝜏𝜏2,𝑣𝑣𝜏𝜏1) = 𝜙𝜙�𝑣𝑣𝜏𝜏3,𝜙𝜙(𝑣𝑣𝜏𝜏2, 𝑣𝑣𝜏𝜏1)� (2)

= −2𝑣𝑣𝜏𝜏3𝜙𝜙(𝑣𝑣𝜏𝜏2, 𝑣𝑣𝜏𝜏1) + 𝑣𝑣𝜏𝜏3 + 𝜙𝜙(𝑣𝑣𝜏𝜏2, 𝑣𝑣𝜏𝜏1) (3)

A graph showing the dendritic encoder is given in Figure 1. For example, [1 0 1]′ and [0 1 1]′ are encoded into the
codes [0 1 0 1 1 0 1 0]′ and [0 0 1 1 1 1 0  0]′ respectively.
 Let 𝑢𝑢 denote a scalar and 𝑣𝑣 = [𝑣𝑣1 𝑣𝑣2 ⋯ 𝑣𝑣𝑘𝑘] a 𝑘𝑘-dimensional vector. Define a 𝑘𝑘-dimensional vector 𝜙𝜙(𝑢𝑢, 𝑣𝑣) of
polynomials by

𝜙𝜙(𝑢𝑢, 𝑣𝑣) = [𝜙𝜙(𝑢𝑢, 𝑣𝑣1) 𝜙𝜙(𝑢𝑢, 𝑣𝑣2) ⋯ 𝜙𝜙(𝑢𝑢, 𝑣𝑣𝑘𝑘)]

Figure 1. A dendritic encoder. The dendritic encoder is a dendritic tree that encodes its 3 binary inputs, 𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, into a 23-bit
dendritic code 𝑣𝑣�′(1, 2, 3) constructed with Equations (4)-(7) where m = 3. The entries of 𝑣𝑣�′(1, 2, 3) are the inputs to the synapses.

15

IJCMB 2021, Vol 1, Issue 1, 12–24, https://doi.org/10.35745/ijcmb2021v01.01.0003

The 2𝑚𝑚 different functions that can be defined by compositions of the binary operation 𝜙𝜙 on the input set {𝑣𝑣1, 𝑣𝑣2, ...,
𝑣𝑣𝑚𝑚} are generated and organized into a 2𝑚𝑚-dimensional column vector 𝑣𝑣� by recursively generating row vectors 𝑣𝑣�(1,⋯ , 𝑘𝑘), for
𝑘𝑘 = 1, 2, ..., 𝑚𝑚, as follows:

 𝑣𝑣�(1) = [0 𝑣𝑣1] (4)
 𝑣𝑣�(1, 2) = �𝑣𝑣�(1)𝜙𝜙�𝑣𝑣2,𝑣𝑣�(1)��

 = [0 𝑣𝑣1 𝑣𝑣2 −2𝑣𝑣2𝑣𝑣1 + 𝑣𝑣2 + 𝑣𝑣1] (5)
 𝑣𝑣�(1,⋯ ,𝑘𝑘 + 1) = �𝑣𝑣�(1,⋯ , 𝑘𝑘 + 1)𝜙𝜙�𝑣𝑣𝑘𝑘+1,𝑣𝑣�(1,⋯ , 𝑘𝑘)�� (6)
 𝑣𝑣� = 𝑣𝑣�′(1,⋯ ,𝑚𝑚) (7)

 Denoting the 𝑘𝑘-th component of 𝑣𝑣� by 𝑣𝑣�𝑘𝑘, the vector 𝑣𝑣� = [𝑣𝑣�1 𝑣𝑣�2 ⋯ 𝑣𝑣�2𝑚𝑚]′ is called the dendritic expansion of 𝑣𝑣. It
is proven in that given two 𝑚𝑚-dimensional binary vectors, 𝑣𝑣 and 𝑢𝑢, their dendritic expansions, 𝑣𝑣� and 𝑢𝑢� , satisfy

 �𝑣𝑣� − 1
2
𝐈𝐈�
′
�𝑢𝑢� − 1

2
𝐈𝐈� = 0, if 𝑣𝑣 ≠ 𝑢𝑢 (8)

= 2𝑚𝑚−2, if 𝑣𝑣 = 𝑢𝑢 (9)

where 𝐈𝐈 = [1 1 ⋯ 1]′ with dim 𝐈𝐈 = 2𝑚𝑚. Note that 𝐈𝐈 is not the identity matrix 𝐼𝐼.

3. Unsupervised and supervised learning rule and the resultant memory in synapses

The unsupervised covariance rule that updates the strength 𝐷𝐷𝑖𝑖𝑖𝑖 of the synapse receiving 𝑣𝑣�𝑡𝑡𝑖𝑖 and feeding spiking neuron 𝑖𝑖
whose output is 𝑢𝑢𝑡𝑡𝑖𝑖 follows:

 𝐷𝐷𝑖𝑖𝑖𝑖 ← 𝜆𝜆𝐷𝐷𝑖𝑖𝑖𝑖 + 𝛬𝛬(𝑢𝑢𝑡𝑡𝑖𝑖 − ⟨𝑢𝑢𝑡𝑡𝑖𝑖⟩)�𝑣𝑣�𝑡𝑡𝑖𝑖 − �𝑣𝑣�𝑡𝑡𝑖𝑖�� (10)

where 𝛬𝛬 is a proportional constant, 𝜆𝜆 is a forgetting factor that is a positive number less than one, and �𝑣𝑣�𝑡𝑡𝑖𝑖� and ⟨𝑢𝑢𝑡𝑡𝑖𝑖⟩ denote,
respectively, the average activities of the presynaptic dendritic node 𝑗𝑗 and postsynaptic spiking neuron 𝑖𝑖 over some suitable time
intervals. The unsupervised covariance rule is shown in Figure 2. Note that this learning rule is actually a Hebbian-type learning
rule [1-3].

 Note that as 𝑢𝑢𝑡𝑡𝑖𝑖 and 𝑣𝑣𝑡𝑡𝑖𝑖 are stochastice neuron spikes with values, 1 and 0, with probabilities tending to approach ½, the
averages �𝑣𝑣�𝑡𝑡𝑖𝑖� and ⟨𝑢𝑢𝑡𝑡𝑖𝑖⟩ approach ½, which makes �v�tj − �v�tj��′�v�tj − �v�tj�� = 0. In many machine learning applications, the
averages, �𝑣𝑣�𝑡𝑡𝑖𝑖� and ⟨𝑢𝑢𝑡𝑡𝑖𝑖⟩, over time are unnecessary and they are set equal to ½ to make use of the orthogonality property in (8)
and (9). This is done in our experiments in Section 8.

 The outputs 𝑢𝑢𝑡𝑡𝑖𝑖, 𝑖𝑖 = 1, … ,𝑅𝑅, of the 𝑅𝑅 spiking somas can be assembled into a vector, 𝑢𝑢𝑡𝑡 = [𝑢𝑢𝑡𝑡1 𝑢𝑢𝑡𝑡2 ⋯ 𝑢𝑢𝑡𝑡𝑡𝑡]′, and
the strengths 𝐷𝐷𝑖𝑖𝑖𝑖 into a matrix 𝐷𝐷 whose 𝑖𝑖 × 𝑗𝑗-th entry is 𝐷𝐷𝑖𝑖𝑖𝑖. The vector 𝑢𝑢𝑡𝑡 is the label of the input vector 𝑣𝑣𝑡𝑡 that is selected
in accordance with a probability distribution or membership function by the neurons for unsupervised learning . Such selection
creates a vocabulary for the neurons themselves.
 For supervised learning, the output 𝑢𝑢𝑡𝑡𝑖𝑖 from the spiking soma 𝑖𝑖 in (10) is replaced with a component 𝑤𝑤𝑡𝑡𝑖𝑖 of the label of
the input vector 𝑣𝑣𝑡𝑡 provided from outside the CLM. Note that the label is that of the feature vector in the receptive field of soma
𝑖𝑖.

Soma 𝑖𝑖 needs the output 𝑐𝑐𝑡𝑡 of a nonspiking soma to generate its output 𝑢𝑢𝑡𝑡𝑖𝑖. The synaptic strengths 𝑐𝑐𝑡𝑡𝑖𝑖 on the connections
from the output terminals of a dendritic encoder to soma 𝑖𝑖 form a row vector 𝐶𝐶 and are updated by the following unsupervised
accumulation rule, where λ and Λ are the forgetting and normalization factor respectively:

 𝐶𝐶 ← 𝜆𝜆𝐶𝐶 + 𝛬𝛬
2

(𝑣𝑣�𝑡𝑡 − ⟨𝑣𝑣�𝑡𝑡⟩)′ (11)

16

IJCMB 2021, Vol 1, Issue 1, 12–24, https://doi.org/10.35745/ijcmb2021v01.01.0003

Figure 2. The unsupervised covariance learning rule. The output 𝑢𝑢𝑡𝑡𝑖𝑖 from soma i is learned jointly with the output 𝑣𝑣�𝑡𝑡𝑖𝑖 from a
synapse by the above Hebbian-type rule to update the synapse strength 𝐷𝐷𝑖𝑖𝑖𝑖.

4. Masking Matrices for Binary, Real-Valued and Ranked Data

Let a vector 𝑣𝑣𝜏𝜏 that deviates from each of the vectors 𝑣𝑣𝑠𝑠, that have been learned by the synapses on a dendritic encoder due
to corruption, distortion or occlusion, be presented to the dendritic encoder. The dendritic tree and its synapses are said to have a
maximal generalization capability in their retrieval of information, if they are able to automatically find the largest subvector of 𝑣𝑣𝜏𝜏
that matches at least one subvector among the vectors 𝑣𝑣𝑠𝑠 stored in the synapses and enable post-synaptic neurons to generate the
empirical probability distribution of the label of the largest subvector. Such a maximal capability is achieved by the use of a masking
matrix described in this section.

In [1, 3], the following orthogonal expansion of bipolar binary vectors 𝑎𝑎 = [𝑎𝑎1 𝑎𝑎2 ⋯ 𝑎𝑎𝑚𝑚]′ was discovered:

𝑎𝑎�(1) = [1 𝑎𝑎1]′

𝑎𝑎�(1, . . . , 𝑗𝑗 + 1) = [𝑎𝑎�′(1, . . . , 𝑗𝑗) 𝑎𝑎𝑖𝑖+1𝑎𝑎�′(1, . . . , 𝑗𝑗)]′ for 𝑗𝑗 = 1, … ,𝑚𝑚 − 1
𝑎𝑎� = 𝑎𝑎�(1, . . . ,𝑚𝑚)

 (12)

where 𝑎𝑎� is called the orthogonal expansion of 𝑎𝑎. For example, if 𝑎𝑎 = [𝑎𝑎1 𝑎𝑎2 𝑎𝑎3], then

𝑎𝑎� = [1 𝑎𝑎1 𝑎𝑎2 𝑎𝑎2𝑎𝑎1 𝑎𝑎3 𝑎𝑎3𝑎𝑎1 𝑎𝑎3𝑎𝑎2 𝑎𝑎3𝑎𝑎2𝑎𝑎1]

Let us denote the vector 𝑎𝑎 = [𝑎𝑎1 𝑎𝑎2 ⋯ 𝑎𝑎𝑚𝑚]′ with its 𝑖𝑖1 -th, 𝑖𝑖2 -th, ..., and 𝑖𝑖𝑖𝑖 -th components set equal to 0 by
𝑎𝑎�𝑖𝑖1−, 𝑖𝑖2−, … , 𝑖𝑖𝑖𝑖−� , where 1 ≤ 𝑖𝑖1 𝑖𝑖2 ... 𝑖𝑖𝑖𝑖 ≤ 𝑚𝑚 , and the dendritic and orthogonal expansions of 𝑎𝑎�𝑖𝑖1−, 𝑖𝑖2−, … , 𝑖𝑖𝑖𝑖−� by
𝑎𝑎��𝑖𝑖1−, 𝑖𝑖2−, … , 𝑖𝑖𝑖𝑖−� and 𝑎𝑎��𝑖𝑖1−, 𝑖𝑖2−, … , 𝑖𝑖𝑖𝑖−�, respectively. Denoting the 𝑚𝑚-dimensional vector [1 1 ⋯ 1]′ by 𝐈𝐈, the vector 𝐈𝐈 with

its 𝑖𝑖1-th, 𝑖𝑖2-th, ..., and 𝑖𝑖𝑖𝑖-th components set equal to 0 is 𝐈𝐈�𝑖𝑖1−, 𝑖𝑖2−, … , 𝑖𝑖𝑖𝑖−� and the orthogonal expansion of 𝐈𝐈�𝑖𝑖1−, 𝑖𝑖2−, … , 𝑖𝑖𝑖𝑖−� is

denoted by �̂�𝐈�𝑖𝑖1−, 𝑖𝑖2−, … , 𝑖𝑖𝑖𝑖−� . For the vector 𝑎𝑎 = [𝑎𝑎1 𝑎𝑎2 ⋯ 𝑎𝑎𝑚𝑚]′,𝑎𝑎��𝑖𝑖1−, 𝑖𝑖2−, … , 𝑖𝑖𝑖𝑖−� = �diag�̂�𝐈�𝑖𝑖1−, 𝑖𝑖2−, … , 𝑖𝑖𝑖𝑖−�� 𝑎𝑎� . Notice that
diag�̂�𝐈�𝑖𝑖1−, 𝑖𝑖2−, … , 𝑖𝑖𝑖𝑖−� eliminates (i.e., masks) components in 𝑎𝑎� that involve 𝑎𝑎𝑖𝑖1 , 𝑎𝑎𝑖𝑖2 , ..., 𝑎𝑎𝑖𝑖𝑗𝑗 . Therefore, diag�̂�𝐈�𝑖𝑖1−, 𝑖𝑖2−, … , 𝑖𝑖𝑖𝑖−� is
called a masking matrix.

An important property of the masking matrix diag �̂�𝐈�𝑖𝑖1−, 𝑖𝑖2−, … , 𝑖𝑖𝑖𝑖−� is the following: Assume that 𝑣𝑣𝑠𝑠 and 𝑣𝑣𝜏𝜏 are binary
vectors. If

�diag �̂�𝐈�𝑖𝑖1−, 𝑖𝑖2−, … , 𝑖𝑖𝑖𝑖−�� �𝑣𝑣�𝑠𝑠 −
1
2
�̂�𝐈� = �diag �̂�𝐈�𝑖𝑖1−, 𝑖𝑖2−, … , 𝑖𝑖𝑖𝑖−�� �𝑣𝑣�𝜏𝜏 −

1
2
�̂�𝐈�

17

IJCMB 2021, Vol 1, Issue 1, 12–24, https://doi.org/10.35745/ijcmb2021v01.01.0003

then

 (𝑣𝑣�𝑠𝑠 − ⟨𝑣𝑣�𝑠𝑠⟩)′ �diag 𝑰𝑰��𝑖𝑖1−, 𝑖𝑖2−, … , 𝑖𝑖𝑖𝑖−�� (𝑣𝑣�𝜏𝜏 − ⟨𝑣𝑣�𝜏𝜏⟩) = 2𝑚𝑚−2−𝑖𝑖 . (12)

If

�diag �̂�𝐈�𝑖𝑖1−, 𝑖𝑖2−, … , 𝑖𝑖𝑖𝑖−�� �𝑣𝑣�𝑠𝑠 −
1
2
�̂�𝐈� ≠ �diag �̂�𝐈�𝑖𝑖1−, 𝑖𝑖2−, … , 𝑖𝑖𝑖𝑖−�� �𝑣𝑣�𝜏𝜏 −

1
2
�̂�𝐈�

then

 (𝑣𝑣�𝑠𝑠 − ⟨𝑣𝑣�𝑠𝑠⟩)′ �diag 𝑰𝑰��𝑖𝑖1−, 𝑖𝑖2−, … , 𝑖𝑖𝑖𝑖−�� (𝑣𝑣�𝜏𝜏 − ⟨𝑣𝑣�𝜏𝜏⟩) = 0

In the CLM in [1-3], the masking matrix is intended for learning a binary image, not like a binary number, whose bits are of
the same significance. The label of a learned image stored in the synapses with the most bits equal to their corresponding bits in the
input (or query) image should be recalled. For example, if a learned image is identical to the input image, the label of the learned
image is recalled. If no such a perfect match, then the label of a learned image that matches the input image except one bit is recalled.
If the learned images match the input image except at least j bits, then the labels of those learned images that matches the input
image with exactly j bits should be recalled with confidence proportional to 2−𝑖𝑖𝑗𝑗 for some positive constant 𝜂𝜂. Therefore, the least
number of bits in the stored images are masked to yield a match with the input image with the highest confidence. The number j of
masked bits is called the masking level.

Because the masking level to be needed for an input image is unknown, we include masks of reasonable number of levels in
the masking matrix, but use masking level weights to reduce the effects of masking unnecessary number of bits. Following this idea,
we obtain the following masking matrix where 2−𝑖𝑖𝑗𝑗 are called the masking level weights for reducing the effects of masking level
j and η is called the masking level parameter:

 𝑀𝑀 = 𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑 𝑰𝑰� + �2−𝑖𝑖𝑗𝑗
𝐽𝐽

𝑖𝑖=1

�⋯ � �𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑 𝑰𝑰��𝑖𝑖1−, 𝑖𝑖2−,⋯ , 𝑖𝑖𝑖𝑖−�
𝑖𝑖2−1

𝑖𝑖1=1

𝑖𝑖3−1

𝑖𝑖2=2

𝐽𝐽

𝑖𝑖𝑗𝑗=𝑖𝑖

 (13)

For real-valued data and ranked data to be processed by the dendrited trees, the real numbers and ranks are first converted into
a binary vector such as the standard binary number and the standard unary code (or thermometer code), whose entries are naturally
ordered. In a binary vector, different bits have different significances. In general, the higher bits (those in positions more to the left)
are more signigicant than the lower bits. To take into consideration of such relative significances to enhance the generalization
capability of the CLM (cortical learning machine), we introduce the position weights in addition to the level weight discussed above.

Let F real-valued or ranked features, 𝑓𝑓 = 1, … ,𝐹𝐹, be represented by binary numbers or unary codes, which can be written as
binary vectors, 𝑣𝑣𝑓𝑓, 𝑓𝑓 = 1, … ,𝐹𝐹. We concatenate them into a vector 𝑣𝑣 = [𝑣𝑣1′ ⋯ 𝑣𝑣𝐹𝐹′]′, where the prime ′ denotes the vector
transposition. Let 𝑣𝑣𝑓𝑓𝑓𝑓 denotes the n-th entry in the m-th feature in 𝑣𝑣. Then, 𝑣𝑣𝑓𝑓′ = [𝑣𝑣𝑓𝑓1 ⋯ 𝑣𝑣𝑓𝑓𝑓𝑓𝑖𝑖𝑚𝑚𝑣𝑣𝑓𝑓]′. For example, if 𝑣𝑣𝑓𝑓 =
[𝑣𝑣𝑓𝑓1 𝑣𝑣𝑓𝑓2 𝑣𝑣𝑓𝑓3]′ for 𝑓𝑓 = 1, 2, then 𝑣𝑣 = [𝑣𝑣11 𝑣𝑣12 𝑣𝑣13 𝑣𝑣21 𝑣𝑣22 𝑣𝑣23]′, 𝑣𝑣21 is the first entry of the second feature, and I(𝑖𝑖21−) =
[1 1 1 0 1 1].

Note that the entries in 𝑣𝑣𝑓𝑓 have different significance. Assume that the vector 𝑣𝑣 input to a PU. The masking matrix 𝑀𝑀(𝑓𝑓) for
the feature vector 𝑣𝑣𝑓𝑓 and the masking matrix 𝑀𝑀 for the input vector 𝑣𝑣 with both masking level weights 2−𝑖𝑖𝑗𝑗 and masking position
weghts 2−𝜉𝜉𝑓𝑓 follows:

𝑀𝑀(𝑓𝑓) = 𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑 𝑰𝑰� + 2−𝑗𝑗 � 2−𝜉𝜉𝑖𝑖𝑓𝑓1𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑 � 𝑰𝑰��𝑖𝑖𝑓𝑓1− �� + 2−2𝑗𝑗 � � 2−𝜉𝜉�𝑖𝑖𝑓𝑓1+𝑖𝑖𝑓𝑓2�𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑 � 𝑰𝑰��𝑖𝑖𝑓𝑓1− , 𝑖𝑖𝑓𝑓2− ��

𝑖𝑖𝑓𝑓2−1

𝑖𝑖𝑓𝑓1=1

𝑓𝑓𝑖𝑖𝑚𝑚𝑣𝑣𝑓𝑓−𝑠𝑠𝑓𝑓

𝑖𝑖𝑓𝑓2=2

𝑓𝑓𝑖𝑖𝑚𝑚𝑣𝑣𝑓𝑓−𝑠𝑠𝑓𝑓

𝑖𝑖𝑓𝑓1=1

18

IJCMB 2021, Vol 1, Issue 1, 12–24, https://doi.org/10.35745/ijcmb2021v01.01.0003

+⋯+ 2−𝐽𝐽𝑓𝑓𝑗𝑗 � ⋯ � � 2−𝜉𝜉�∑ 𝑖𝑖𝑓𝑓𝑓𝑓
𝐽𝐽𝑓𝑓
𝑓𝑓=1 �𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑 � 𝑰𝑰��𝑖𝑖𝑓𝑓1− , 𝑖𝑖𝑓𝑓2− ,⋯ , 𝑖𝑖𝑓𝑓𝑖𝑖− ��

𝑖𝑖𝑓𝑓2−1

𝑖𝑖𝑓𝑓1=1

𝑖𝑖𝑓𝑓3−1

𝑖𝑖𝑓𝑓2=2

𝑓𝑓𝑖𝑖𝑚𝑚𝑣𝑣𝑓𝑓−𝑠𝑠𝑓𝑓

𝑖𝑖𝑓𝑓𝐽𝐽𝑓𝑓=𝐽𝐽𝑓𝑓

 𝑀𝑀(𝑓𝑓) = 𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑 𝑰𝑰� + � 2−𝑖𝑖𝑗𝑗
𝑓𝑓𝑖𝑖𝑚𝑚𝑣𝑣𝑓𝑓−𝑠𝑠𝑓𝑓

𝑖𝑖=1

� ⋯ � � 2−𝜉𝜉�∑ 𝑖𝑖𝑓𝑓𝑓𝑓
𝑗𝑗
𝑓𝑓=1 �𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑 � 𝑰𝑰��𝑖𝑖𝑓𝑓1− , 𝑖𝑖𝑓𝑓2− ,⋯ , 𝑖𝑖𝑓𝑓𝑖𝑖− ��

𝑖𝑖𝑓𝑓2−1

𝑖𝑖𝑓𝑓1=1

𝑖𝑖𝑓𝑓3−1

𝑖𝑖𝑓𝑓2=2

𝑓𝑓𝑖𝑖𝑚𝑚𝑣𝑣𝑓𝑓−𝑠𝑠𝑓𝑓

𝑖𝑖𝑓𝑓𝑗𝑗=𝑖𝑖

 (15)

𝑀𝑀 = �𝑀𝑀(𝑓𝑓)
𝐹𝐹

𝑓𝑓=1

where dim 𝑰𝑰�𝑖𝑖𝑓𝑓1− , 𝑖𝑖𝑓𝑓2− ,⋯ , 𝑖𝑖𝑓𝑓𝑖𝑖− � = ∑ 𝑑𝑑𝑖𝑖𝑚𝑚𝑣𝑣𝑓𝑓𝐹𝐹
𝑓𝑓=1 , 𝜂𝜂 is called the masking level parameter, 𝜉𝜉 is called the masking position parameter,

and the number of the left-most bits (or positions) not to be masked is denoted by 𝑠𝑠𝑓𝑓. For example, changing the 2 left-most bits of
a binary number changes greatly the value of the binary number. To avoid the generalization from such a different binary number,
we can set 𝑠𝑠𝑓𝑓 = 2. The non-negative real-valued 𝜉𝜉 is called the masking position parameter. In most application involving ranked
data and real-valued data, the level weights are unneccessary and hence 𝜂𝜂 = 0.

Equation (15) shows the idea of using masking level and position weights. The masking level weights and masking position
weights in (14) can deviate from those specified in (15), depending on the application, to achieve the best accuracy of the CLM. We
may start with (15) and then use the trial and error method of tweaking the masking level and position weights to maximize the
accuracy of the CLM. For example, in the Iris classification example in Subsection 8.2, the optimal masking position weights of the
two right most bits of the binary numbers turned out to be equal to one.

If the input vector or input matrix represents an image whose entries are not ordered, then position weights are unnecessary.
In this case, by setting 𝜉𝜉 = 0, we obtain a general formula of the masking matrix for input vectors with separate feature vectors,
which are masked separately with level weights. Dividing the input image into subimages with separate masking matrices allows
us to have the masked bits more evenly distributed and avoid a large number of masked bits to concentrate in a small area on the
imput image.

Note that 𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑 �𝑰𝑰��𝑖𝑖1−, 𝑖𝑖2−,⋯ , 𝑖𝑖𝑖𝑖−�� = ∏ 𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑 �𝑰𝑰�(𝑖𝑖𝑘𝑘−)�𝑖𝑖
𝑘𝑘=1 , which helps reducing the computation of the masking matrix. Upon

the arrival of 𝑣𝑣�𝜏𝜏 at time 𝜏𝜏, the synapses in Fig. 2 compute the following products, 𝑑𝑑𝜏𝜏 and 𝑐𝑐𝜏𝜏.

 𝑑𝑑𝜏𝜏 = 𝐷𝐷𝑀𝑀(𝑣𝑣�𝜏𝜏 − ⟨𝑣𝑣�𝜏𝜏⟩) (16)

 𝑐𝑐𝜏𝜏 = 𝐶𝐶𝑀𝑀(𝑣𝑣�𝜏𝜏 − ⟨𝑣𝑣�𝜏𝜏⟩) (17)

which are then input to and processed by nonspiking and spiking somas in Fig. 3 to produce the probabilities for spiking somas to
generate a pulse 𝑣𝑣𝜏𝜏. The retrieving rules (16) and (17) are variants of the retrieving rules of the associative memory [9-11].

5. Estimation of Labels by Somas

Once a vector 𝑣𝑣𝜏𝜏 is received and encoded by a dendritic encoder into 𝑣𝑣�𝜏𝜏, it is made available to synapses for learning as well
as retrieving of the information about the label of the input 𝑣𝑣𝜏𝜏 . In response to 𝑣𝑣�𝜏𝜏 , the masking matrix 𝑀𝑀 computes
𝑀𝑀𝑖𝑖𝑖𝑖�𝑣𝑣�𝜏𝜏𝑖𝑖 − �𝑣𝑣�𝜏𝜏𝑖𝑖�� for all 𝑗𝑗.

19

IJCMB 2021, Vol 1, Issue 1, 12–24, https://doi.org/10.35745/ijcmb2021v01.01.0003

Figure 3. Nonspiking soma and spiking soma k. The former simply add up its inputs received from its preceding synapses. The
latter computes the empirical probability 𝑝𝑝𝜏𝜏𝑖𝑖 and generate a spike with the probability.

The computations in the nonspiking and a spiking soma in a PU to generate an estimate of a component of the l
abel input to the PU are shown in Figure 3. Synapse 𝑗𝑗 for a nonspiking soma then computes 𝑐𝑐𝜏𝜏𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖�𝑣𝑣�𝜏𝜏𝑖𝑖 − �𝑣𝑣�𝜏𝜏𝑖𝑖��,
for all 𝑗𝑗, where 𝑀𝑀𝑖𝑖𝑖𝑖 is the 𝑗𝑗-th diagonal entry of 𝑀𝑀. The model nonspiking soma sums up 𝑐𝑐𝜏𝜏𝑖𝑖 to obtain the graded sign
al 𝑐𝑐𝜏𝜏. Note that the synaptic weight vector 𝐶𝐶 is defined in (11). Because of the orthogonality property of 𝑣𝑣�𝜏𝜏, 𝑡𝑡 = 1, ...,
 𝑇𝑇; 𝑐𝑐𝜏𝜏 is an estimate of the total number of times 𝑣𝑣�𝜏𝜏 has been encoded and stored in 𝐶𝐶. The inhibitory output −𝑐𝑐𝜏𝜏is
a graded signal transmitted to each of the mentioned 𝑅𝑅 spiking neurons that generate a point estimate of the label
𝑟𝑟𝑡𝑡 of 𝑣𝑣𝜏𝜏. The entries of the 𝑗𝑗th row 𝐷𝐷𝑖𝑖 of 𝐷𝐷 are the weights or strengths of the synapses for the 𝑗𝑗th spiking neuron. I
n response to 𝑣𝑣�𝜏𝜏 produced by the dendritic encoders, the masking matrix 𝑀𝑀 and synapses for the 𝑗𝑗th spiking neuron co
mpute 𝑀𝑀𝑖𝑖𝑖𝑖�𝑣𝑣�𝜏𝜏𝑖𝑖 − �𝑣𝑣�𝜏𝜏𝑖𝑖�� and 𝑑𝑑𝜏𝜏𝑘𝑘𝑖𝑖 = 𝐷𝐷𝑘𝑘𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖�𝑣𝑣�𝜏𝜏𝑖𝑖 − �𝑣𝑣�𝜏𝜏𝑖𝑖��, respectively. The 𝑗𝑗th spiking neuron (a model spiking neuron) s
ums up 𝑑𝑑𝜏𝜏𝑘𝑘𝑖𝑖 to obtain the graded signal 𝑑𝑑𝜏𝜏𝑘𝑘 = ∑ 𝑑𝑑𝜏𝜏𝑘𝑘𝑖𝑖𝑖𝑖 .

Because of the orthogonality property of 𝑣𝑣�𝜏𝜏; 𝑑𝑑𝜏𝜏𝑘𝑘 is an estimate of the total number of times 𝑣𝑣𝜏𝜏 has been encoded and stored
in 𝐷𝐷𝑘𝑘 with the 𝑘𝑘th component 𝑟𝑟𝜏𝜏𝑘𝑘 of 𝑟𝑟𝜏𝜏 being 1 minus the total number of times 𝑣𝑣𝜏𝜏 has been encoded and stored in 𝐷𝐷𝑘𝑘 with
the 𝑘𝑘th component 𝑟𝑟𝜏𝜏𝑘𝑘 of 𝑟𝑟𝜏𝜏 being 0. The effects of 𝑀𝑀, 𝜆𝜆 and 𝛬𝛬 are included in computing said total numbers, which make
𝑑𝑑𝜏𝜏𝑘𝑘 only an estimate.

Recall that 𝑐𝑐𝜏𝜏 is an estimate of the total number of times 𝑣𝑣𝜏𝜏 has been learned regardless of its labels. Therefore,
(𝑐𝑐𝜏𝜏 + 𝑑𝑑𝜏𝜏𝑘𝑘)/2 is an estimate of the total number of times 𝑣𝑣𝜏𝜏 has been encoded and stored with the 𝑘𝑘th component 𝑟𝑟𝜏𝜏𝑘𝑘 of 𝑟𝑟𝜏𝜏 being
1. Consequently, (𝑑𝑑𝜏𝜏𝑘𝑘/𝑐𝑐𝜏𝜏 + 1)/2 is the empirical probability 𝑝𝑝𝜏𝜏𝑘𝑘 that 𝑟𝑟𝜏𝜏𝑘𝑘 is equal to 1. The 𝑘𝑘th spiking neuron then uses a
pseudo-random generator to generate 1 with probability 𝑝𝑝𝜏𝜏𝑖𝑖 and 0 with probability 1 − 𝑝𝑝𝜏𝜏𝑖𝑖. This 1 or 0 is the output of the 𝑘𝑘th
spiking neuron. Biological justification of the model nonspiking and spiking somas are provided in [10].

Note that the vector 𝑝𝑝𝜏𝜏 = [𝑝𝑝𝜏𝜏1 𝑝𝑝𝜏𝜏2 ⋯ 𝑝𝑝𝜏𝜏𝑡𝑡]′ is a representation of a empirical probability distribution of the label 𝑟𝑟𝜏𝜏 of
the input vector 𝑣𝑣𝜏𝜏. A pseudorandom ternary number generator in the 𝑗𝑗th spiking neuron uses 𝑝𝑝𝜏𝜏𝑖𝑖 to generate an output denoted by
𝑣𝑣{𝑝𝑝𝜏𝜏𝑘𝑘} as follows: 𝑣𝑣{𝑝𝑝𝜏𝜏𝑘𝑘} = 1 with probability 𝑝𝑝𝜏𝜏𝑘𝑘 , and 𝑣𝑣{𝑝𝑝𝜏𝜏𝑘𝑘} = −1 with probability 1 − 𝑝𝑝𝜏𝜏𝑘𝑘. Note also that the outputs of the
𝑅𝑅 spiking neurons in response to 𝑣𝑣𝜏𝜏 form a binary vector 𝑣𝑣{𝑝𝑝𝜏𝜏}, which is a point estimate of the label 𝑟𝑟𝜏𝜏 of 𝑣𝑣𝜏𝜏.

6. Processing Units (PUs)
CLM organizes a biological neural network into a recurrent network of PUs (processing units). A schematic diagram of a PU

is shown in Figure 4 below, which shows how dendritic encoders, synapses, a nonspiking soma, 𝑅𝑅 spiking somas, and learning
and retrieving mechanisms are integrated into a processing unit (PU). The vector 𝑣𝑣𝜏𝜏 input to a PU is first expanded by dendritic
encoders into a dendritic code 𝑣𝑣�𝜏𝜏. 𝑣𝑣�𝜏𝜏 is used to compute 𝑐𝑐𝜏𝜏𝑖𝑖 and 𝑑𝑑𝜏𝜏𝑘𝑘𝑖𝑖 using the synaptic weights 𝐶𝐶𝑖𝑖 and 𝐷𝐷𝑘𝑘𝑖𝑖 respectively.

The nonspiking soma in the PU computes the sum ∑ 𝑐𝑐𝜏𝜏𝑖𝑖𝑖𝑖 , and the 𝑘𝑘th spiking soma computes ∑ 𝑑𝑑𝜏𝜏𝑘𝑘𝑖𝑖𝑖𝑖 and 𝑝𝑝𝜏𝜏𝑘𝑘 = �∑𝑖𝑖

𝑑𝑑𝜏𝜏𝑘𝑘𝑖𝑖 /∑ 𝑐𝑐𝜏𝜏𝑖𝑖𝑖𝑖 + 1�/2, which is the relative frequency that the 𝑘𝑘th digit of the label of 𝑣𝑣𝜏𝜏 is +1. By a pseudo-random generator, the
𝑘𝑘th spiking soma outputs 𝑣𝑣{𝑝𝑝𝜏𝜏𝑘𝑘}, which is +1 with probability 𝑝𝑝𝜏𝜏𝑘𝑘 and is −1 with probability 1 − 𝑝𝑝𝜏𝜏𝑘𝑘, for 𝑘𝑘 = 1, ..., 𝑅𝑅. 𝑣𝑣{𝑝𝑝𝜏𝜏}

20

IJCMB 2021, Vol 1, Issue 1, 12–24, https://doi.org/10.35745/ijcmb2021v01.01.0003

= [𝑣𝑣{𝑝𝑝𝜏𝜏1} ⋯ 𝑣𝑣{𝑝𝑝𝜏𝜏𝑡𝑡}]′ is a point estimate of the label of 𝑣𝑣𝜏𝜏. Note that use of weights in the masking matrices can facilitate max-
pooling of dendritic encoders in the computation of 𝑝𝑝𝜏𝜏𝑘𝑘.

The lever in a hand-drawn circle indicates that the handcrafted 𝑟𝑟𝜏𝜏 is used for supervised learning, and the PU is a supervised
PU (SPU). If the lever is placed at the short dashed line, then the estimated label 𝑣𝑣{𝑝𝑝𝜏𝜏} is used for unsupervised learning. In this
case, the PU is a unsupervised PU (UPU). UPUs in the lowest layer cluster and recognize the lowest level of pattern elements such
as variants of a hyphen, a pipe, a slash, a back slash, and so on. These pattern elements are integrated from layer to layer into larger
and larger pattern elements and patterns. As long as a vector 𝑣𝑣 is input to the SPU or UPU, it learns with or without supervision.

The nonspiking soma in the PU computes the sum ∑ 𝑐𝑐𝜏𝜏𝑖𝑖𝑖𝑖 , and the 𝑘𝑘th spiking soma computes ∑ 𝑑𝑑𝜏𝜏𝑘𝑘𝑖𝑖𝑖𝑖 and 𝑝𝑝𝜏𝜏𝑘𝑘 = �∑𝑖𝑖
𝑑𝑑𝜏𝜏𝑘𝑘𝑖𝑖 /∑ 𝑐𝑐𝜏𝜏𝑖𝑖𝑖𝑖 + 1�/2, which is the relative frequency that the 𝑘𝑘th digit of the label of 𝑣𝑣𝜏𝜏 is +1. By a pseudo-random generator, the
𝑘𝑘th spiking soma outputs 𝑣𝑣{𝑝𝑝𝜏𝜏𝑘𝑘}, which is +1 with probability 𝑝𝑝𝜏𝜏𝑘𝑘 and is −1 with probability 1 − 𝑝𝑝𝜏𝜏𝑘𝑘, for 𝑘𝑘 = 1, ..., 𝑅𝑅. 𝑣𝑣{𝑝𝑝𝜏𝜏}
= [𝑣𝑣{𝑝𝑝𝜏𝜏1} ⋯ 𝑣𝑣{𝑝𝑝𝜏𝜏𝑡𝑡}]′ is a point estimate of the label of 𝑣𝑣𝜏𝜏. Note that use of weights in the masking matrices can facilitate max-
pooling of dendritic encoders in the computation of 𝑝𝑝𝜏𝜏𝑘𝑘.

Figure 4. Supervised Processing Unit (SPU). An SPU comprises dendriteic encoders, synapses with strength C/D, a masking
matrix M, R spiking somas, 1 nonspiking soma, and the supervised covariance learning mechanism. Their coordinated functions
produce R empirical probabilities 𝑝𝑝𝜏𝜏𝑘𝑘, which are used to generate R spike trains 𝑣𝑣{𝑝𝑝𝜏𝜏}.

 The nonspiking soma in the PU computes the sum ∑ 𝑐𝑐𝜏𝜏𝑖𝑖𝑖𝑖 , and the 𝑘𝑘th spiking soma computes ∑ 𝑑𝑑𝜏𝜏𝑘𝑘𝑖𝑖𝑖𝑖 and 𝑝𝑝𝜏𝜏𝑘𝑘 = �∑𝑖𝑖
𝑑𝑑𝜏𝜏𝑘𝑘𝑖𝑖 /∑ 𝑐𝑐𝜏𝜏𝑖𝑖𝑖𝑖 + 1�/2, which is the relative frequency that the 𝑘𝑘th digit of the label of 𝑣𝑣𝜏𝜏 is +1. By a pseudo-random generator, the
𝑘𝑘th spiking soma outputs 𝑣𝑣{𝑝𝑝𝜏𝜏𝑘𝑘}, which is +1 with probability 𝑝𝑝𝜏𝜏𝑘𝑘 and is −1 with probability 1 − 𝑝𝑝𝜏𝜏𝑘𝑘, for 𝑘𝑘 = 1, ..., 𝑅𝑅. 𝑣𝑣{𝑝𝑝𝜏𝜏}
= [𝑣𝑣{𝑝𝑝𝜏𝜏1} ⋯ 𝑣𝑣{𝑝𝑝𝜏𝜏𝑡𝑡}]′ is a point estimate of the label of 𝑣𝑣𝜏𝜏. Note that use of weights in the masking matrices can facilitate max-
pooling of dendritic encoders in the computation of 𝑝𝑝𝜏𝜏𝑘𝑘.

The green lever circled with the red solid line indicates that the estimated label 𝑣𝑣{𝑝𝑝𝜏𝜏} is used for unsupervised learning. In
this case, the PU is a unsupervised PU (UPU). If the green lever is placed in the position circled with the blue dashed line, then the
handcrafted 𝑟𝑟𝜏𝜏 is used for supervised learning, and the PU is a supervised PU (SPU). UPUs in the lowest layer cluster and recognize
the lowest level of pattern elements such as variants of a hyphen, a pipe, a slash, a back slash, and so on. These pattern elements are
integrated from layer to layer into larger and larger pattern elements and patterns. As long as inputs are provided to an UPU by
sensors or other parts of the CLM, the UPU learns (without supervision).

By the maximal/adjustable generalization capability (or more specifically, masking matrix M), each UPU acts as a cluster of
its input vectors 𝑣𝑣𝜏𝜏. If 𝑣𝑣𝜏𝜏 or a close version has not been learned by an UPU, The UPU generates the label of 𝑣𝑣𝜏𝜏 at random. This
enables the UPU to act as a pattern recognizer by itself. Whenever a handcrafted label 𝑟𝑟𝜏𝜏 is available to an SPU, the SPU learns its
input vector 𝑣𝑣𝜏𝜏 with 𝑟𝑟𝜏𝜏. By the maximal/adjustable generalization capability, the entire cluster(s) constructed by the UPU(s) that
provide 𝑣𝑣𝜏𝜏 is assigned the same label 𝑟𝑟𝜏𝜏. This minimizes the amount of handcrafted labels required.

21

IJCMB 2021, Vol 1, Issue 1, 12–24, https://doi.org/10.35745/ijcmb2021v01.01.0003

7. Clustering and Interpreting

The version of CLM proposed herein consists of a hierarchical network of UPUs (unsupervised processing units) with
feedbacks connections, acting as pattern recognizers, and a number of offshoot SPUs (supervised processing units), translating the
self-generated labels from UPUs into human language, which are called the clusterer and interpreter, respectively. An example
clusterer in its entirety for clustering spatial and temporal data is shown in Figure 5. The feedback connections in the clusterer have
delay devices of different durations make CLM suitable for recognizing temporal patterns in video and movie. However, they will
not be used in the proposed project.

Figure 5. (a) A network of UPUs called a Clusterer and (b) a network of SPUs called an Interpreter. The clusterer performs
unsupervised learning and the interpreter supervised learning to translate a self-generated vocabulary into a common vocabulary.

Once an exogenous feature vector is input to the clusterer, the UPUs perform retrieving and/or learning from layer to layer
starting with layer 1, the lowest layer. After the UPUs in the highest layer complete performing their functions, the clusterer is said
to have completed one round of retrievings and/or learnings (or memory adjustments). For each exogenous feature vector, the
clusterer will continue to complete a certain number of rounds of retrievings and/or learnings.

The clusterer in Figure 5(a) is also shown in Figure 5(b) with the connections and delay devices removed. The three UPUs in
the lowest layer of the clusterer do not branch out, but each of the three UPUs in the second and third layers branches out to an SPU.
UPU(𝟏𝟏2) and UPU(𝟐𝟐2) in the second layer have feedforward connections to SPU(𝟏𝟏2) and SPU(𝟐𝟐2) respectively, and UPU(𝟏𝟏3)
in the third layer has feedforward connections to SPU(𝟏𝟏3). The labels, rτ(𝟏𝟏2), rτ(𝟐𝟐2) and rτ(𝟏𝟏3), which are used for supervised
learning are provided by the human trainer of the CLM.

8. Three Numerical Experiments on Real-Valued and Ranked Data

The CLM is tested on the iris classification, car evaluation, and congressional voting dataset from the UCI Machine Learning
Repository [12]. The continuous-valued data and rank data are converted into the standard binary numbers or unary codes. The
trainings and testings of 10,000 CLMs with a single processing unit (PU) were done on 10-fold cross validation datasets from each
of the three datasets on a UMBC parallel computer version with 86 nodes.

The numerical test confirmed the feasibility and excellent performanc of only a single PU of the CLM trained by its supervised

learning scheme. However, to confirm the unsupervised learning scheme of CLM, which is usually used for a larger dataset, and to

get CLM accepted so as to contribute to the progress of machine learning, this proposal is seeking funding to conduct numerical
experiments for CLM on large and popular datasets for direct comparison with CNN.

8.1. Experimental Procedure

Each of the three datasets is used as follows: The standard 10-fold cross-validation tesing is performed to test the CLM on the
dataset used: The dataset is randomly partitioned into 10 subsets. One of them is used as the test dataset, and the other nine subsets
are combined into the training dataset. An CLM is trained on the training dataset, tested on the test dataset, and the classification

22

IJCMB 2021, Vol 1, Issue 1, 12–24, https://doi.org/10.35745/ijcmb2021v01.01.0003

rate (i.e., rate of correct classification) is recorded. Repeating this with each of the 10 data subsets as the test dataset, we obtain 10
classification rates.

We repeatedly partition the dataset into 10 subsets 1,000 times to get 1,000 partitionings of the dataset, and repeatedly
performing the standard 10-fold cross-validation testing 1000 times to get 10,000 classification rates altogether. The average and
variance of the 10,000 classification rates are computed and reported.

8.2. Iris classification

The UCI Iris Classification dataset [12] is concerned with using four real-valued attributes of an iris flower: sepal length in
cm; sepal width in cm; petal length in cm; and petal width in cm to classify the flower into 3 classes: iris setosa; iris versicolour;
and iris virginica. 150 instances are given.

We rank the different values of 150 measurements of each attribute, find the maximum and minimum of them, and determine
the number of bits required to represent the different values by a binary number for the attribute. It turns out that we need to assign
6-bit binary numbers to the values of the sepal length and petal length and 5-bit binary numbers to the values of the sepal width and
petal width values. Thus there are four attribute binary numbers with a total of 22 bits forming the input to the PU of the CLM.
Using the 10-fold cross-validation testing procedure described in Subsection 8.1, 10,000 CLMs were implemented each to learn a
data subset of 150 × (9/10) instances and to be tested on a data subset of 150 × (1/10) instances for classifying the four
attributes presented to it into a type of iris. Note that the training data and the test data for each CLM do not share any instance.

As discussed in Section 4, Equation (15) is intended to show the idea of using masking position weights and its variants should
be considered in selecting one for the application. A selected variant of (15) with more flexibility follows:

 𝑀𝑀(𝑓𝑓) = Diag �̂�𝐈 + ∑ 2−𝑖𝑖𝑗𝑗𝐽𝐽𝑓𝑓
𝑖𝑖=1 ∑ ⋯ ∑ ∑ 2−𝜉𝜉�∑ 𝑟𝑟𝑓𝑓𝑓𝑓

𝑗𝑗
𝑓𝑓=1 �diag ��̂�𝐈�𝑖𝑖𝑓𝑓1− , 𝑖𝑖𝑓𝑓2− ,⋯ , 𝑖𝑖𝑓𝑓𝑖𝑖− ��

𝑖𝑖𝑓𝑓2−1
𝑖𝑖𝑓𝑓1=1

𝑖𝑖𝑓𝑓3−1
𝑖𝑖𝑓𝑓2=2

dim𝑣𝑣𝑓𝑓−𝑠𝑠𝑓𝑓
𝑖𝑖𝑓𝑓𝑗𝑗=𝑖𝑖

 (18)

where 𝑟𝑟𝑓𝑓𝑘𝑘 = 0 if 𝑘𝑘 ≤ 𝑚𝑚 and 𝑟𝑟𝑓𝑓𝑘𝑘 = 𝑖𝑖𝑓𝑓𝑘𝑘 if 𝑘𝑘 > 𝑚𝑚 for a selected integer 𝑚𝑚. This variant sets the position weights of the 𝑚𝑚 least
significant bits to be 0, allowing more freedom to mask these least significant bits than to mask the bits with more significance.

For the iris classification dataset, 𝑣𝑣𝑓𝑓 = sepal length, sepal width, petal length, and petal width in binary form, respectively;
dim𝑣𝑣𝑓𝑓 = 6, 5, 6, 5 for 𝑓𝑓 = 1, 2, 3, 4, respectively; 𝐽𝐽𝑓𝑓 = 6, 5, 6, 5; and 𝑠𝑠𝑓𝑓 = 0 . It is found by trial and error that the best
parameters are 𝜂𝜂 = 0, 𝜉𝜉 = 5, and 𝑚𝑚 = 2 in (18).

According to the procedure described in Subsection 8.1, the average of the 10,000 classification rates are 96.15% and the
maximum and minimum are 98.00% and 91.33%, respectively.

Although historical test results by the procedure described in Subsection 8.1 applied 10,000 times to another prediction method
cannot be found, some results on other methods provide an approximate comparison. The Waikato Environment for Knowledge
Analysis (WEKA) implementations of the J48 decision tree, Naive Bayes, and multilayer perceptron are reported to achieve 10-fold
cross-validation accuracy rates of 96%, 96%, and 97:33%, respectively [4]. The C4.5 decision tree is reported to achieve 10-fold
cross-validation accuracy ratings of 94.33% and 94.67% with boosting and bagging, respectively [11]. There are other accuracy
rates obtained by RBF and SVM. All such historical results are comparable to mean accuracy rate of 96.15% of a single PU
(processing unit) in the CLM (cortical learning machine). Such performance of a single PU shows the potential of a CLM that is a
multilayer network of PUs as a learning machine. Recall that the CLM has the capabilities of real-time, photographic, unsupervised
and hierarchical learning discussed in Section 1.

8.3. Car Evaluation

The UCI Car Evalustion dataset [12] is concerned with using six categorical attributes: buying price; maintenance cost; number
of doors; number of passengers; luggage boot; and safety to classify the car into four demands: unacceptable; acceptable; good; very
good. 1,728 instances are given.

Each of the six attributes has 4 categories. We use 3-bit unary codes (i.e., thermometer codes) {000, 001, 011, 111} for the
buying price; maintenance cost; and number of doors, and 2-bit unary codes {00, 01, 11} for the number of passengers; luggage
boot; and safety. Altogether 15 bits are input to the CLM. The four demands are represented by four 1-hot binary vectors that are
output from the PU.

For the car evaluation dataset, we set 𝑣𝑣𝑓𝑓 = buying price; maintenance cost; number of doors; number of passengers; luggage
boot; and safety in unary codes, respectively; dim𝑣𝑣𝑓𝑓 = 3, 3, 3, 2, 2, 2 for 𝑓𝑓 = 1, 2, 3, 4, 5, 6, respectively; 𝐽𝐽𝑓𝑓 = 3, 3, 3, 2, 2, 2;
and 𝑠𝑠𝑓𝑓 = 0. It is found by trial and error that the best parameters are 𝜂𝜂 = 0, 𝜉𝜉 = 30 in (15).

23

IJCMB 2021, Vol 1, Issue 1, 12–24, https://doi.org/10.35745/ijcmb2021v01.01.0003

Following the procedure described in the Subsection 8.1, 10,000 CLMs were implemented each to learn a data subset of
1,720× (9/10) instances and to be tested on a data subset of 1,720× (1/10) + 8 instances for classifying the six attributes
presented to it into one of the four classes. The average, the maximum, and minimum of the accuracy rates of the 10,000
implemented PUs are 96.70%, 97.6273%, and 95.54%, respectively.

Although historical test results by the procedure described in Subsection 8.1 applied 10,000 times to another prediction method
cannot be found, some results provide an approximate comparison. Several well-known learning algorithms have been applied to

the Car UCI Evaluation dataset and reported in other publications for comparison, analysis, and development. Using 10 times
repeated 10-fold cross-validation, the C4.5 and C5 decision tree algorithms are reported to achieve accuracy ratings of 92.2 ± 2.2%
and 92.2 ± 2.1%, respectively. The Waikato Environment for Knowledge Analysis (WEKA) implementation of the Naive Bayes
classifier is reported to achieve 85.706% 10-fold cross-validation accuracy. The same publication also reports a 10-fold cross-
validation accuracy rating of 99:537% using the WEKA implementation of the multilayer perceptron.

It is evident that the PU outperforms the aforementioned historical results pertaining to the C4.5 and C5 decision trees and the
Naive Bayes classifier, but is outperformed by the multilayer perceptron. We believe given more time to adjust the masking position
weights or perhaps use the binary numbers, the difference can be reduced or even eliminated.

8.3. Congressional Voting Prediction

The UCI Congressional Voting Records data set [12] consists of binary voting histories of elected representatives in the 98th
US congress on key issues identfied by the Congressional Quarterly Almanac. Of the 435 data instances, there are 267 democrats
and 168 republicans. There are 16 features, each of which identifies whether the corresponding representative voted yay or nay on
the respective bill. Although the features are binary, there is technically a third category denoting an unknown position due to
abstention. The voting histories are used to predict the party membership of each representative, whether they be democrat or
republican.

The 16 features and their respective categorical values, yay and nay, are represented 1 and 0, respectively. The unknown is
represented by ½ to make use of the orthogonal property in (8) and (9). Let I denote the 16-bit vector whose entries are all equal to
1. If we want to mask the f-th feature, Then

 M(f) = diag �̂�𝐈 + 2−ξif1diag ��̂�𝐈(if1−)�

 𝑀𝑀 = ∏ 𝑀𝑀(𝑓𝑓)16
𝑓𝑓=1 = ∏ �𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑 𝑰𝑰� + 2−𝜉𝜉𝑖𝑖𝑓𝑓1𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑 �𝑰𝑰��𝑖𝑖𝑓𝑓1− ���16

𝑓𝑓=1 (19)

 An alternative way to construct a masking matrix M is to treat the 16 features as a single feature with 16 components of the same
significance, like those in an image. Then we have

 𝑀𝑀 = 𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑 𝑰𝑰� + �2−𝑖𝑖𝑗𝑗
16

𝑖𝑖=1

�⋯ � �𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑 �𝑰𝑰��𝑖𝑖1−, 𝑖𝑖2−,⋯ , 𝑖𝑖𝑖𝑖−��
𝑖𝑖2−1

𝑖𝑖1=1

𝑖𝑖3−1

𝑖𝑖2=2

16

𝑖𝑖𝑗𝑗=𝑖𝑖

which is equal to (19) if the masking level parameter 𝜂𝜂 is equal to the masking position parameter 𝜉𝜉.

The masking position or level weight parameter 𝜂𝜂 is set equal to 4 above. Using the 10-fold cross-validation testing procedure
described inSubsection 8.1, 10,000 CLMs were implemented. The average, maximum and minimum of their 10,000 accuracies are
respectively equal to 93.33%, 94.4828% and 91.95%.

Although historical test results by the procedure described in Subsection 8.1 applied 10,000 times to another prediction method
cannot be found, some results provide an approximate comparison. With 10 times repeated 10-fold cross validation, the WEKA
implementations of the J48 decision tree and Naive Bayes algorithms are reported to achieve mean accuracies of 96:46±0:17% and
90:18±0:07%, respectively [1]. The default WEKA version 3.8.1 implementation of the multilayer perceptron achieves a 10-fold
cross-validation accuracy of 94:7126%, configured with 16 input nodes, 9 hidden nodes, and 2 output nodes.

24

IJCMB 2021, Vol 1, Issue 1, 12–24, https://doi.org/10.35745/ijcmb2021v01.01.0003

9. Conclusion

The CLM (cortical learning machine) reported herein has the capabilities of real-time, photographic, unsupervised a
nd hierarchical learning, which are highly desirable of learning machines for applications and AI. After all, humans and
 even animals learn with such capabilities. Being a low-order computational model of the biological neural networks, th
e CLM is a hierarchical multilayer network of processing units (PUs) each comprising novel models of dendrites (for e
ncoding), synapses (for storing code covariance matrices), spiking/nonspiking somas (for evaluating empirical probabilitie
s and generating spikes), unsupervised/supervised Hebbian learning schemes, and a masking matrix of the interneuron co
nnection (for generalization).

Numerical experiments of a single PU of the CLM on small benchmark datasets result in performances comparable to those
of leading learning algorithms, showing the promises of the CLM as a learning machine for real-world applications and as a true
model of the biological neural networks for answering the holy grail questions on how the brain encodes, learns, memorizes, recalls
and generalizes.

Author Contributions: Contributions are listed as follows: conceptualization, J.L.; methodology, J.L. and B.C.; software, B.C.; validation, B.C.;
formal analysis, J.L. and B.C.; investigation, J.L. and B.C.; writing—original draft preparation, J.L. and B.C.; writing—review and editing, J.L.;
visualization, J.L.

Funding: The work was supported in part by the U.S.A. National Science Foundation under Grant ECCS1028048 and Grant ECCS1508880, but
does not necessarily reflect the position or policy of the U.S.A. Government..

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lo, J. T.-H. Functional model of biological neural networks. Cognitive Neurodynamics 2010, 4(4):295–313.
2. Lo, J. T.-H. A low-order model of biological neural networks. Neural Computation 2011, 23(10):2626–2682.
3. Lo, J. T.-H. A cortex-like learning machine for temporal hierarchical pattern clustering, detection, and recognition. Neurocomputing 2012,

78:89–103.
4. Fox, C. A.; Barnard, J. W. A quantitative study of the purkinje cell dendritic branches and their relationship to afferent fibers. Journal of

Anatomy 1957, 91:299–313.
5. George, D.; Hawkins, J. Towards a mathematical theory of cortical micro-circuits. PLoS Computational Biology 2009, 5(10):1–26.
6. Granger, R. Engines of the brain. The computational instruction set of human cognition. AI Magazine 2006, 27:15–31
7. Grossberg, S. Towards a unified theory of neocortex 2007, Laminar cortical circuits for vision and cognition. Progress in Brain Research

2007, 165:79–104.
8. Martin, K. A. C. Microcircuits in visual cortex. Current Opinion in Neurobiology 2002, 12(4): 418–42.
9. Hassoun, M. H. Associative Neural Memories. Theory and Implementation, Oxford University Press, New York, New York, 1993.
10. Hinton, G. E.; Anderson, J. A. Parallel Models of Associative Memory, Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1989.
11. Kohonen, T. Self-Organization and Associative Memory, Springer Verlag, New York, New York, 1988.
12. UC Irvine Machine Learning Repository. Available online: https://archive.ics.uci.edu/ml/index.php.

Publisher’s Note: IIKII stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 The Author(s). Published with license by IIKII, Singapore. This is an Open Access article distributed under the
terms of the Creative Commons Attribution License (CC BY), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

https://archive.ics.uci.edu/ml/index.php
http://creativecommons.org/licenses/by/4.0

	1. Introduction
	2. Encoding inputs to neurons
	3. Unsupervised and supervised learning rule and the resultant memory in synapses
	4. Masking Matrices for Binary, Real-Valued and Ranked Data
	5. Estimation of Labels by Somas
	6. Processing Units (PUs)
	7. Clustering and Interpreting
	8. Three Numerical Experiments on Real-Valued and Ranked Data
	8.1. Experimental Procedure
	8.2. Iris classification
	8.3. Car Evaluation
	8.3. Congressional Voting Prediction

	9. Conclusion
	References

