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Abstract: Deformations of single-walled carbon nanotubes (SWNTs) change their band structure in the nanoelectromechanical 
systems. In this study, we investigated the response of the electronic structure of chiral and nonchiral SWNTs (8,7), (9,6), (10,5), 
(7,7), (11,0), (12,0), and (13,0) to twisting and axial tension modes by using the symmetrized linear augmented cylindrical wave 
technique. We showed that perturbations of the band structures depend on a “family” index p = (n1 − n2)mod 3 (where p = −1, 0 or 
1). Twisting the semiconducting (8,7) tubule with p = 1 in the direction of the screw axis is accompanied by the large broadening 
of minimum gap E11 and narrowing of the second gap E22, while these gaps drastically change in the tubule (10,5) with p = −1. In 
these tubules, changing the direction of twisting leads to the reversal in direction of the gap shifts. Regardless of the twisting direction, 
in metallic (7,7) and quasi-metallic (9,6) SWNTs with p = 0, the E11 gap rapidly increases from 0.0 and 0.035 eV to about 1 eV. 
When twisting the zigzag tubules (13,0) p = 1 and (11,0) p = −1, the gaps E11 equal to about 0.8 eV increase and decrease by several 
hundredths of eV. On the contrary, the compression and extension of these tubules cause a sharp change in their band structure with 
approximately a twofold change in the gaps E11 and E22 and inversion in the sequence of the boundary bands. The similar 
deformation of the armchair nanotube (7,7) has practically no effect on its electronic levels. In the case of zigzag (12,0) p = 0 SWNT, 
all deformation modes transform the quasi-metallic tubule into the semiconductor.  
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1. Introduction 

In recent years, a large number of studies on electromechanical characteristics of carbon nanotubes have been carried out. The 
single-walled nanotubes (SWNTs) are cylindrical molecules that can be viewed as the results of rolling up the graphene ribbons 
into seamless tubules [1]. Their geometry is completely specified by the two positive integers (n1, n2), where n1 ≥ n2 ≥ 0, or by the 
diameter d and chirality angle θ. The (n, n) and (n, 0) SWNTs have an inversion symmetry and are nonchiral, therefore. Other 
tubules are characterized by the right-handed or left-handed helical axis and are chiral. The chirality indices determine the band 
structures of SWNTs [2‒8]. Depending on the diameter and chirality, the tubules have metallic, semiconducting, or quasi-metallic 
properties with great potential applications in nanoelectronics. They have low density and ultrasmall cross-section and are defect-
free [8]. Relative to their diameter, the SWNTs are the stiffest and strongest springs [9,10], but if nanotubes are subjected to 
deformation, their electronic properties change. By stretching, contracting, twisting, and bending the SWNTs, the electronic 
bandgaps are opened in certain metallic nanotubes and modified in the semiconducting tubules. An atomic force microscope (AFM) 
experiments show that the linear electromechanical responses are observed for the axial [11‒13], radial [14], flexural [15], and 
torsional strains [16] in SWNTs as the tubules act as the transistors to sense their motion. All of this points to the remarkable 
possibilities of using SWNTs as the basic ingredients of nanoelectromechanical systems (NEMS) which are devices combining the 
electrical and mechanical properties of carbon nanotubes [17,18]. As an example, a variety of electromechanical resonators on 
nanotubes are used in atomic-scale mass sensors, ultrasensitive force detectors, and nanotube radio devices [18‒22]. 

Since such devices have both electronic and mechanical degrees of freedom, it is of great importance to know how the 
electronic band structures change upon the SWNTs deformations. First, the effects of small uniaxial, bending, and torsional strains 
on the band-gap perturbation of the achiral and chiral SWNTs were analyzed neglecting the nanotubes curvature and applying the 
simple π-electron Hückel approach combined with graphene zone-folding technique to describe the carbon bond network of the 
SWNTs via a single nearest-neighbor hopping parameter [23‒26]. This simple Hamiltonian lacks the accuracy that sophisticated 
models provide. Several studies based on the tight-binding (TB) method, four-orbital extended Hückel method, and two-center 
parameterization of carbon have been carried out to simulate SWNTs under tension, bending, and twisting [23,24,27,28]. Using the 
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same semi-empirical Hamiltonian, the variations of the local density of states and conductance due to the bending and twisting of 
the cluster containing 948 C atoms arranged in an armchair (6,6) structure were studied [29], and the energy gaps formation in a 
wider range of armchair SWNTs having the regions of local twists (twistons) were estimated [30]. The cluster calculations of the 
effects of nanotubes geometry change due to indentation with a sharp AFM tip were simulated using the density functional TB 
method too [31,32]. 

Going beyond the cluster models and semiempirical tight-binding approaches, several first-principles-based calculations on 
this subject have been reported to date [33‒39]. Most of the ab initio calculations focus on the standard examples of the nonchiral 
armchair and zigzag SWNTs [33‒44] because chiral tubules have typically large numbers of atoms Ntr per translational unit cell. 
For example, the Ntr = 40 for the achiral (10,10) SWNT, but Ntr =1084 for the chiral (10,9) tubule that has a smaller diameter. The 
first-principle calculations of the chiral tubules and the effects of torsional deformations require special approaches with helical 
symmetry operations because twisting the tube at even a small angle increases the size of the tube's translation cell infinitely, and 
the usual translation-invariant formulation is computationally prohibitive for long-range deformations with helical symmetry 
[6,7,36‒39]. Moreover, the torsions are the intrinsically chiral modes, they continuously vary the chirality angle and particularly 
turn the achiral SWNTs into chiral objects [45]. Nevertheless, using the symmetrized TB approach, several ab initio calculations of 
the chiral nanotubes and the effects of torsional deformations on the electronic properties of nanotubes have already been presented. 
In Ref. [36], the simplest case of the formation of optical gaps between the highest occupied and lowest unoccupied molecular 
orbitals (HOMO and LUMO) in the metallic nonchiral armchair (n, n) tubes with n from 6 to 25 due to their twisting was considered. 
For several chiral tubes, the perturbations of the HOMO-LUMO gap widths were calculated as a function of the torsional 
deformation [38,39]. However, under the mechanical deformations of the SWNTs, not only the minimum optical gaps are to be 
formed or changed, but the entire band structure of tubules is to be distorted. 

The purpose of this study is to fill this gap by performing the more complete first-principle calculations of the response of the 
band structures of chiral and nonchiral SWNTs to the twisting modes and studying the effects of the axial tension. Here, we apply 
a linearized augmented cylindrical wave (LACW) method in detail which fully utilizes the rotational and helical symmetries and 
allows dealing with helical configurations of SWNTs without translational periodicity [46‒50]. In contrast to the TB method with 
a purely localized set of basis functions, there are both the localized and delocalized components in LACW basis functions, which 
gives advantages for the quantitative description of the energy levels of the conduction band. The main argument for using 
cylindrical waves exists for the cylindrical geometry of the nanotubes in an explicit form that offers obvious advantages. Because 
of the potential applications of SWNTs as components of NEMS, the extensive quantitative studies on their electron structure change 
due to twisting, stretching, and contraction are important. 

2. Materials and Methods 

The structure of any SWNT can be generated by mapping two nearest-neighbor C atoms onto a cylindrical surface and then 
applying the rotational Cn and helical S(hz,ω) symmetry operations to determine the remainder of the tubule [8]. In SWNTs, the Cn 
rotational axis coincides with the cylindrical axis of the system, n being the largest common divisor of the n1 and n2. The screw 
operations S(hz,ω) are the repeated rotations at the angles ω about the tubule axis with translations hz, which depend on the n1 and 
n2 values and determine the helical geometry of SWNTs. Later in the text, we assume that S(hz,ω) is the right-handed screw operation 
along the positive axis of the tubule with a positive helical angle ω around this axis. 

In the LACW method, the helical and rotational symmetry properties of the tubules are taken into account. The true unit cell 
of any SWNT is reduced to only two carbon atoms, and calculations of any nonchiral or chiral tubule with twisting deformation are 
possible as it is independent of the enormous numbers of atoms per translational cell without introducing unwanted end effects and 
cluster models. The LACW method is an extension of the case of tubular compounds of the linear augmented plane-wave (LAPW) 
method that is well-known in the theory of bulk solids as one of the most accurate techniques for calculating the band structures 
[51‒54]. Similar to the LAPW technique, the LACW approach applies the muffin-tin (MT) and local density approximations for 
the electronic potential. The helical and rotational symmetry properties of tubules are taken into account when writing the basis 
functions and Hamiltonian. The rigorous justification of method and explicit equations for the basis functions and secular equations 
are given in this study and recent monograph [46‒49]. The eigenfunctions Ψλ(r|k,L) and energies Eλ(k,L) of the electronic 
Hamiltonian depend on the wave vector k (0 ≤ k ≤ π/hz) and on the rotational quantum number L = 0, 1, ..., n − 1, labeling the 
standing electronic waves in the circumferential direction. The geometry parameters hz and ω of SWNT are used as input data. 
LACW calculations are performed for any tubule and any external twisting angle Δω or axial tension Δhz with the same number of 
computational efforts. The band structures of deformed nanotubes can be best demonstrated in the most complete form applying a 
doubly repeated zone scheme. 
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3. Results and Discussion 

Let us consider the effects of the twisting and axial tension modes on the band structures of the SWNTs (8,7), (9,6), (10,5), 
(7,7), (11,0), (12,0), and (13,0) with virtually equal diameters between 10 and 11 Å, but different chiralities. We restrict the twisting 
and tension amplitudes Δω from −2 up to 2°/Å and Δhz between −5 and 5%, since the ideal cylindrical geometry of nanotubes can 
still be preserved within these limits. However, further twisting or tension leads to the buckling and development of rippling 
deformation with ridges and furrows on their surface, and conductance irreversibly drops beyond the critical deformations [10,16,36]. 
The band properties of the ideal SWNTs not subjected to deformations are characterized by the “family index” p = (n1 − n2) mod 3. 
The SWNTs with p = 0 are known to be metallic if n1 = n2 or quasi-metallic if n1 ≠ n2, and tubes with p = 1 and p = −1 are the 
semiconductors. Therefore, there are both chiral and nonchiral, metallic, quasi-metallic, and semiconducting nanotubes with all p 
indices in this representative series. 

3.1. Chiral SWNTs 

 
Fig. 1. Band structure changes under twisting the (8,7) SWNT. Zero-point energy is at the Fermi level. Γ and K points correspond to 
wave vector k = 0 and k = π/hz. 

Figure 1 shows the first example of calculations, namely, the band structure changes under twisting the chiral (8,7) tubule 
having as many atoms as 676 per translational unit cell. For the undistorted structure, Δω = 0, the Fermi level separates the valence 
and conduction band dispersion curves, and this nanotube is the semiconductor with the minimum direct energy gap Eg = 0.76 eV 
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corresponding to the transition at the A point of the Brillouin zone with k = 0.9 π/hz. The next minimum gap Eg = 1.42 eV is located 
at the B point with k = 1.8 π/hz. The energies of other direct gaps located at the C, …, H points are equal to about 2.5‒3.5 eV.  

 
Fig. 2. Variations of minimum direct gaps of chiral nanotubes due to torsional Δω and axial Δhz deformations. 

The variations of electron structure depend on the twisting direction. Figure 2 shows the two minimum band gap energies as 
the functions of twist angle Δω. Twisting the tube in the helical axis direction at the angles Δω = 0.5 and 1°/Å results in the increase 
of Eg(A) gap up to the 1.45 and 1.8 eV. The LACW calculations confirm the positive sign of the derivative of the minimum gap 
dEg(A)/dΔω at the Δω = 0 obtained originally by using the explicit formulas of the π-electronic Hückel approach for the tubes of 
the series p = 1 [23,24], but the Eg(B) gap gets smaller from 1.42 eV down to 1.1 and 0.46 eV due to these deformations. The 
derivative dEg(B)/dΔω is negative at the Δω = 0. Therefore, for the Δω > 0, the width of the forbidden gap initially grows from 0.76 
eV up to 1.4 eV, and then, at about Δω = 0.5°/Å, it jumps from points A to B and finally decreases down to 0.14 eV at Δω = 1°/Å. 
The twisting by the Δω = ‒0.5 and ‒1°/Å that is, twisting of the tube against the chirality axis, induces the reverse shifts of the gaps 
Eg(A) and Eg(B). At the A point, the gap decreases from 0.76 eV to about 0.33 and 0.24 eV for Δω = ‒0.5 and ‒1°/Å, respectively. 
At the B point, the Eg(B) gap shift is positive. The Eg(B) gap grows from about 1.4 at the Δω = 0 to 1.9 and 2.3 eV at Δω = ‒0.5 
and ‒1°/Å. An increase in the twisting angle in the region ‒1°/Å ≤ Δω ≤ 1°/Å results in approximately linear growth of the energies 
of the direct transitions at points A, C, and E, and by a similar decrease of the transition energies at points B, D, G, F, and H. The 
further twisting of the tubule with angles Δω = ±2°/Å leads to the overlap of the valence and conduction bands and metallization of 
the semiconducting SWNT (8,7). At the Δω = 2°/Å, the conduction band minimum is located at the H point below the Fermi level 
by 0.18 eV and the valence band maximum, at the B point of the Brillouin zone above the Fermi level by approximately the same 
value. With negative twisting of ‒2°/Å, the Ev(C) and Ec(G) levels overlap by ⁓0.05 eV. Figure 2 shows that the stronger twisting 
deformation of the tube is accompanied by its further metallization due to the increase of intersection points of the valence and 
conduction band states. 

As expected for so-called “near-armchair” SWNTs [39] and in sharp contrast to twisting, the stretching and compression 
weakly perturb the electronic structure of the (8,7) SWNT. When its length is varied within ±5%, the level shifts in the valence and 
conduction bands are about ±0.1 eV only. In particular, the minimum gap Eg(A) lies in the range 0.66-0.9 eV (Fig. 2). 

Figure 3 shows how twisting induces the variations of electronic properties of the (10,5) p = −1 chiral nanotube characterized 
by the fifth-order rotational axes. The band structure is presented applying the repeated zone scheme, according to which the bands 
for rotational quantum number n − L are the extensions of the bands for L [46]. At the Δω = 0, the minimum gap with energy Eg = 
0.66 eV is located at the G point with L = 2, and the second gap with Eg = 1.6 eV at the D point with L = 4. At the twisting angle 
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range between 0 and 0.5°/Å, the Eg(G) value falls to 0.24 eV, and it grows up to 0.92 eV with a further increase in Δω to 1°/Å. At 
negative values of the Δω, the main Eg(G) gap rapidly increases up to 2 eV, but the Eg(D) gap drops to 0.3 eV. The Eg(G) and Eg(D) 
gap dependences of Δω intersect at the twisting angle Δω ≈ ‒0.25°/Å . With further deformation, the Eg(D) gaps are significantly 
smaller than the Eg(G) gaps. Similar to the case of the (8,7) tubule, there is a crossing of the valence and conduction bands at Δω = 
± 2°/Å, and the nanotube becomes metallic. This tube belongs to the series p = −1, and the derivative of the main gap dEg(G)/dΔω 
is negative at the Δω = 0 [23,24], but the sign of the dEg(D)/dΔω is positive. Similar to the (8,7) tubule, a picture of the changes in 
the band structure under the action of a nanotube (10,5) twisting becomes complicated as compared to the predictions of the π-
electron approximation. The stretching and compression of the tubule (10,5) within 5% leads to about a twofold decrease and 
increase in the gap Eg(G) to 0.26 and 1.11 eV. Figure 2 shows that the dependence of Eg(G) on the Δhz is linear, simpler than the 
dependence of Eg(G) on the Δω, which has a form of the curve with a sharp minimum of about Δω = 0.5°/Å. 

 
Fig. 3. Band structure changes under twisting the (10,5) SWNT. 

The (9,6) SWNT with p = 0 has the rotational third order axis C3, and the eigenstates depend on the wave vector k and the 
rotational quantum number L = 0, 1, and 2. Figure 4 shows the evolution of the band structure of this SWNT under twisting. 
According to the simple Hückel method, the untwisted tubule must have a metallic type band structure with zero forbidden gap, but 
the LACW approach predicts the formation of the mini-gap Eg = 0.035 eV at F the point on the border between the states with L = 
1 and L = 2 and k ≈ 0 caused by tubule’s cylindrical surface curvature. The energies of other direct gaps are not less than 2 eV. 
Being independent of the direction of weak twisting angle Δω = ±0.25°/Å, the energy of transition Eg(F) increases to 0.34 eV. 
Further twisting the nanotube in the positive and negative directions leads to a monotonic growth of the Eg(F) gap up to the 1.0, 0.9, 
2.1, and 1.8 eV at the Δω = 1, ‒1, 2, and ‒2°/Å. The Δω dependence of Eg(F) is almost symmetric relative to the Δω sign change 
[23,24]. As to the second minimum gap Eg located at point A, it is sensitive to twisting. The change of the Δω angle from ‒2 to 2°/Å 
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results in the decrease of the gap from Eg = 3.6 to Eg = 0.6 eV. For Δω ≤ ‒1°/Å, the Eg(A) gap is smaller than the main gap Eg(F). 
In the case of the large positive Δω angles, the growth of the gap at the F point is accompanied by a drastic decrease in the gaps at 
Eg(G) (L = 2) and Eg(D) (L = 1) resulting finally in the closure of these gaps at the twisting angle equal to 2°/Å. The large negative 
twisting angle with Δω = ‒2°/Å leads to the formation of the conducting states at the A and С points with L = 0 because the Fermi 
level crosses the corresponding curves. For both the right and left twisting, the minimum band gap initially increases, then jumps to 
some new point of the Brillouin zone, decreases, and vanishes.  

The stretching and compression of the (9,6) tubule along the z-axis are also accompanied by an increase in the energy of the 
minimum gap Eg (A), but it is limited to 0.3 eV only in the studied range of deformations. That is, it is an order of magnitude smaller 
than the effect of twisting (Fig. 2). Under uniaxial deformations, the displacements of other electronic levels and gaps are 
insignificant. 

 
Fig. 4. Band structure changes under twisting the (9, 6) SWNT. 

3.2. Armchair SWNTs 

For the simpler cases of the nonchiral SWNTs starting from the (7,7) armchair tubule, when the achiral nanotube is twisted, 
the band structure variations do not depend on the twisting direction due to the symmetry. The tubules twisted for the Δω and ‒Δω 
are the mirror images, and their electronic structures are to be identical. Thus, the positive Δω strains are dealt with only. Figure 5 
shows that in the stress-free case the (7,7), nanotube has the metallic type band structure because of a crossing of π-bands at the A 
point with L = 0 and k = 2π/3hz. The energies of all other gaps are equal to between 2.1 and 3.5 eV. 
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Fig. 5. Band structure changes under twisting the (7,7) SWNT. 

The torsion opens the Eg(A) gap, and it quickly increases up to the 1.3 eV at the Δω angle of 2°/Å. The direct gaps at the C, E, 
and G points become larger, and the gaps at the points D, F, and H decrease due to such deformations of this material. At Δω = 
2°/Å, the gap Eg = 1.0 eV at the D point with L = 6 turns out to be ⁓0.3 eV smaller as compared to the Eg(A) gap. Initially, the 
minimum gap quickly grows from zero to about 1.1 eV, next jumps from points A to D of the Brillouin zone, and finally decreases. 
Coinciding with the TB approach [22,24,36], in the armchair SWNT, a metal-semiconductor transition independent of the twisting 
direction is observed, which effectively controls the carbon nanotube spring conductivity. 

In contrast to twisting, the uniaxial tensions of armchair SWNT do not open any gap at point A. Moreover, at all other points 
B, ..., H, the electronic levels’ shifts due to the stretching and compression of the tubule are visually almost indistinguishable in the 
band diagrams and quantitatively insignificant. Thus, the band structure of the armchair SWNT is changed drastically under the 
twisting, but it is virtually retained under the uniaxial deformations of the tubule (Fig. 6). 
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Fig. 6. Minimum band gap changes under twisting Δω and uniaxial tension Δhz of nonchiral SWNTs. 

3.3. Zigzag SWNTs 

The band structure of the (13,0) p = 1 nanotube is presented in Fig. 7. For the ideal untwisted tubule, the minimum gap Eg(E) 
= 0.85 eV (L = 9) and the energy of the second direct gap Eg(F) is equal to about 1.5 eV (L= 8). All other gaps are above 2.5 eV. 
Twisting the tube at Δω ≤ 2°/Å results in a weak change of the electronic structure only. Thus, the minimum gap Eg(E) increases to 
0.94 eV only, and changes in the energies of other direct transitions are limited to 0.1 eV. The positive sign of minimum band gap 
derivative dEg(E)/dΔω is the same as predicted in the Hückel model for the SWNTs of this family [22,23]. On the contrary, Fig. 6 
shows that uniaxial deformations of this tubule strongly disturb the electronic energy levels, changing even the boundary band order. 
Stretching the tube within 5% leads to a rapid increase (twofold at Δhz = 5%) in the gap at point E and the same decrease in the 
transition energy at point F. Near the Δhz = 2%, the gaps coincide, Eg(E) ≈ Eg(F) ≈ 1.2 eV, and then an inversion of the order of gaps 
at these points of the Brillouin zone is observed. The contraction of this tube is accompanied by the drop in the Eg(E) gap from 0.85 
eV to 0.33 eV and an increase in the Eg(F) value to 1.8 eV. At Δhz = 0, the sign of the derivative of the width of the minimum 
forbidden band dEg(E)/dhz is positive, as it is expected for tubes of the family p = 1 [22,23], and the sign of the derivative dEg(F)/dhz 
is negative. 
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Fig. 7. Variation of band structure of (13,0) SWNT due to stretching (Δhz > 0) and compression (Δhz < 0) 

Similar to the (13,0) case, twisting the semiconducting (11,0) p = −1 SWNT is accompanied by a weak change in the electron 
levels (Fig. 8). In the ideal (11,0) nanotube, the minimum direct gap Eg(E) = 0.78 eV corresponds to electronic transition at the E 
point and L = 7. Twisting this tubule up to the Δω ≤ 2°/Å results in a decrease in the gap by 0.05 eV only. The energies of all other 
direct gaps are equal to the 1.6 eV or larger and their average variations are about 0.1 eV. The extension and compression have a 
strong effect on the electronic structure of the (11,0) tubule. Here, an intersection of the two minimum gaps Eg(E) and Eg(F) is 
observed under the compression with Δhz = −2%. For an approximately threefold decrease in the optical gap, one must stretch the 
tube (11,0) by 5%. Here, for the main minimum gap, dEg(E)/dhz < 0, and for the second gap, dEg(D)/dhz > 0. Thus, within the 
considered deformations, the semiconducting zigzag tubules are rigid to mechanical twisting, but not to extension or contraction. 
For NEMS devices, the tubules with resistant to torsion and sensitive to axial deformations are required. 

 
Fig. 8. Variation of band structure of (11,0) SWNT due to stretching and compression. 
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Figures 6 and 9 show that there is the minigap Eg = 0.04 eV at point E (L = 8) in the ideal quasi-metallic (12,0) p = 0 zigzag 
SWNT. It is the narrow-gap semiconductor due to the effects of the nanotube’s surface curvature. In this tube, the band gap Eg(E) 
increases any time when it is twisted, stretched, or compressed. An increase in the Δω twist angle from zero to 2°/Å is accompanied 
by growth in the minimum gap up to 0.3 eV only. The change is smaller than the variation of the gap in the quasi-metallic chiral 
(9,6) SWNT due to twisting. The stretching leads to the faster growth of the gap Eg(E) up to the 0.91 eV at Δhz = 5%. When the 
tube is compressed by 5%, the energy of the direct transition Eg(E) reaches 0.83 eV, but this transition competes with an indirect 
gap between the states Ev(E) and Ec(A) with energy gap equal to 0.45 eV at Δhz = −5%. 

 
Fig. 9. Band structure change under twisting Δω, stretching, and compression ±Δhz (12,0) SWNT. 

4. Conclusions 

The effects of twisting and axial tensions on the band structures of chiral and achiral SWNTs were quantitatively investigated 
in detail in the framework of the LACW theory. Due to the account of all symmetry operations, the computational costs for all 
tubules are the same with all twisting, compression, and extension deformations. It is found that even relatively small perturbations 
of the SWNTs geometry strongly affect not only the minimum band gap but also the energies of other direct and indirect optical 
transitions. In the chiral semiconducting tubules, the induced shifts of the first and second gaps are opposite, and an inversion of the 
order of gaps as well as metallization takes place under the twisting and axial modes. In the metallic and quasi-metallic tubules, a 
transition to the semiconducting states is observed regardless of the direction of even small twisting, but their band structures are 
rigid to axial deformations. In achiral semiconductor tubes, the band structure, including the order of the boundary bands, changes 
strongly upon stretching, but the effects of twisting are weaker in an order of magnitude. These results show that the optical and 
electrical properties of SWNTs can be controlled just by applying suitable deformations. 
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