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Abstract: Design-based research (DBR) is a popular approach for studying and maximizing the effectiveness of learning 
environments in the Learning Sciences. This approach has historically been approached from a mixed-methodological perspective. 
In this article, we argue that, with an ever-increasing focus on using the results of DBR to inform policy and practice, the design of 
DBR studies must be made more robust by addressing issues inherent to the quantitative methodologies employed to track gains in 
learning. We propose four key design principles (Measurement Matters, Learning is Longitudinal, Use Samples Smartly, and Invest 
in Fidelity), as well as an analytic framework within which to apply them. A brief case study is used to demonstrate some of these 
elements in practice.  
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1. Introduction 

Dede (2004) once asked, “If design-based research is the answer, what is the question?” At the time, design-based research 
(DBR) was gaining popularity in the Learning Sciences, particularly with individuals focused on researching the design and 
implementation of computer-supported collaborative learning environments. Dede’s (2004) friendly critique was on the notion that 
DBR was capable of doing many things, from design and implementation testing to theory formation and testing, almost 
simultaneously. Characterized as a mixed-methods approach falling somewhere between ethnography and large-scale quantitative 
experimentation (Collins et al., 2004), the usage of DBR has continued to increase in lock-step with the rise of the Learning Sciences 
in the past decade (Sommerhof, et al., 2018). That said, the definition of DBR, and its intended purposes, still seems to be somewhat 
vague. More recently, Puntambekar (2018) argued that DBR is characterized as the iterative development of a learning environment 
in an authentic context, via a trajectory of purposeful studies that both generate and test key theories and conjectures and culminate 
in a larger implementation. We agree with Puntambekar (2018) in principle but have found that the advice given therein does not 
acknowledge the unique design requirements that the quantitative aspects of mixed-methods research necessitate.  

In this article, we define a program of robust design-based research (RDBR) that focuses on the quantitative research aspects 
common to most DBR studies. We refer to this framework as Robust Design Based Research (RDBR). We highlight the fragility 
of quantitative research, in light of the many assumptions required for inferences to be valid and useful. We then present four 
principles representing practices in research design that address particular areas of weakness particular to the use of quantitative 
methods in DBR. We then propose a quantitative methodological approach, Bayesian multilevel modeling, that allows researchers 
to incorporate our proposed practices into a unified decision-making framework. We conclude this article with a case study of these 
principles in action, along with final thoughts. 

2. Glass Cannon: Quantitative Research 

As mentioned, most DBR studies are mixed-methods in nature (Puntambekar, 2018). Methodological guidance for various 
types of mixed-methods research abounds (e.g., Creswell, 2011). In this article, we seek to reframe this guidance in the service of 
DBR, specifically to support future research and provide preliminary evidence to policy and practice-based decision-makers. To 
begin, the quantitative and qualitative components of a mixed-methods study are not equally robust. Internal validity of deep and 
careful observations, interviews and collected artifacts are a hallmark of qualitative studies conducted with care (Maxwell, 2012). 
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Quantitative studies, on the other hand, rest heavily on multiple layers of assumptions (Gelman & Hill, 2006). For example, 
inferences from a common OLS linear regression model (equivalent to a t-test, ANOVA, ANCOVA, etc.) require the following 
assumptions to be valid and useable: 1) data are randomly sampled from a defined population, 2) the relationship between the mean 
values of the predictor(s) and the outcome are linearly related, 3) residuals are equally and normally distributed around said linear 
trend-line, 4) residuals are conditionally independent (i.e., not clustered), 5) there is no measurement error or bias in any of the 
manifest or latent variables in the model, 6) the sample size is large enough to reliably detect the effect of interest given an assumed 
minimum effect size (i.e., there was adequate statistical power), and 7) no individual data points are exerting undue leverage on the 
modeled trend (Gelman & Hill, 2006; Murnane & Willett, 2010, Gelman et al., 2020).  

These assumptions need to be checked or verified every time a linear model (e.g., every t-test, ANOVA, ANCOVA, etc.) is 
used to check for mean differences between variables of interest. Several assumptions, such as linearity of relationships, 
independence of residuals, and outliers, can be addressed directly in the statistical modeling process. The rest, however, are functions 
of the design and execution of the research agenda and cannot be addressed post-hoc. Or, as Light, Singer, and Willett (1990) put 
it, “You can’t fix by analysis what you bungle by design.” In essence, the quantitative inferential component of any given mixed-
methods study is a glass cannon – it is extremely powerful when used as intended, yet equally fragile and prone to breakage if not 
used perfectly. With that in mind, we developed the following set of recommendations to make the quantitative facets of mixed-
methods DBR studies more robust. We distilled these pillars of best practice through dozens of years of combined experience in 
DBR studies but acknowledge that they are not a perfect solution for every research project. We also note that, being design-focused, 
they are entirely prescriptive in nature and must not be treated as a lens to judge the quality of previously conducted DBR projects. 

3. Pillars of Robust Design-based Research 

3.1. Measurement Matters 

One of the stickiest, and most ignored, frailties of quantitative research is that inferences are impacted by the quality of 
measurement of important variables in myriad ways. For example, measurement error may have a higher impact on statistical power 
than sample size in moderately sized studies, and a small number of samples may systematically increase the likelihood that the 
magnitude and direction of detected effects might be biased (Gelman & Carlin, 2014). As such, we recommend that researchers 
endeavoring to engage in DBR spend appropriate effort and resources in identifying, or designing and psychometrically validating, 
instruments to measure change in cognitive, affective, and behavioral constructs of interest. Systematic validation of meaningful 
constructs dates back to at least the middle of the 20th century (Cronbach & Meehl, 1955), and must not be overlooked in DBR. On 
the contrary, given the small sample sizes during the iterative design phase, it needs to take center stage. 

3.2. Learning is Longitudinal 

It is a given that the social and socio-cultural aspects of learning are accepted and supported throughout the Learning Sciences. 
That said, learning is always a longitudinal process that occurs, in large part, within each student.  That said, quantitative tracking 
of learning must not be reduced to the use of pre-post (or worse yet, just post) instruments. Instead, researchers must endeavor to 
measure changes in knowledge, affect, and behavior repeatedly (using the aforementioned robust measures) over the course of the 
iterative design/implementation phases of the study, as well as during the culminating pilot study.  The benefits of this approach 
are twofold. 

Firstly, fitting such data to individual growth models (multilevel regression models with time clustered by student) allows 
researchers to detect potential non-linear or discontinuous trends in learning (Singer & Willett, 2003). These non-linear trends 
indicate points during which student learning is suppressed or enhanced by aspects of the design. Researchers can use this 
information, triangulated with rich qualitative data, to iteratively improve the learning environment and give valuable information 
to the teacher or facilitator about the need for additional scaffolding. Secondly, such within-student examinations of learning are 
always inherently more statistically powerful and precise than between-group studies of single mean effects (Gelman, 2018). For 
example, consider forty students in an implementation study of a DBR project. Randomly assigning twenty students each to a 
treatment or control condition (ignoring clustering by class and assuming pre-test scores are used as a control) would result in a 
statistical power of 0.80 to detect effect size differences of about d = 0.65 or greater at an alpha of 0.05. In other words, such a 
design can only reliably detect large effects in learning, and may systematically over or underestimate the nature of smaller effects. 
On the other hand, a repeated measures design with the same number of students randomly assigned to two groups (or to an A/B 
comparison) but analyzing four measurements over time would have a power of 0.80 to detect effects of d = 0.20 or greater at an 
alpha of 0.05. In other words, doubling the number of observed measurements nearly tripled the precision of the study.  
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3.3. Use Samples Smartly 

Strategic selection and use of samples in DBR help to bolster the transferability of findings and give decision-makers a better 
understanding of the potential limitations of inferences they can make based on findings from a DBR study. Sample selection, when 
possible, must systematically reflect the demographic and cognitive variability of the population of the students for which the 
learning environment is being designed. This is accomplished, for example, by purposefully choosing classrooms in rural, suburban, 
and urban schools. The potential heterogeneity in usage and effects allows researchers to better preliminarily model the potential 
benefits of the learning environment under study, and give decision-makers guidance as to how its adoption may be accepted by 
their school and students. Furthermore, researchers conducting DBR studies can strategically phase their implementation studies 
such that different classes from different teachers are cyclically exposed to the different phases of the design. For example, if a 
research team is working with two teachers, then the classes from Teacher 1 would test the initial design. After iterative updates, 
the classes from Teacher 2 would test the next design. This process would continue throughout the iterative design process. Doing 
so prevents the iterative re-designs from over-addressing the needs of an arbitrary group of students and generates evidence about 
how design choices made in one class may be implemented in a new class. That is to say, transferability. 

3.4. Invest in Fidelity 

One final necessary investment of resources in the design of a DBR study is the identification of measures of fidelity of 
implementation. By identifying clear factors of “proper” use of the designed learning environment, and developing scales to track 
variability in said factors, researchers can identify ways in which variability in the use of learning environments might be related to 
differentiation in outcomes of interest. One example of this process is found in the fidelity instrument used by the EcoLearn program 
team at the Harvard Graduate School of Education (McGivney et al., 2019). Evidence of the quality of implementation from this 
instrument can be used formatively to identify specific aspects of inquiry-based practices, scientific reasoning, general thinking 
supports, and the degree to which curricular goals were met by teachers in the classroom. This information can be used to 
qualitatively frame the success of implementation studies, as well as quantitatively predict variation in learning in the 
implementation and pilot studies, as described below. 

4. Unifying Analytics through Multilevel Modeling 

As evidenced by the recommendations above, data produced in DBR studies are (or must be) longitudinal, nested by class and 
research phase, and often sensitive to issues of measurement. Statistical approaches historically employed by learning scientists are 
not ideally suited to handle multi-dimensional complexity.  Advances in computational efficiency and power, as well as applied 
statistical analytic methods, have opened doors to approaches better suited to answering questions in the Learning Sciences. One 
particularly powerful approach to analyzing these types of data is the use of Bayesian multilevel models (Gelman & Hill, 2006; 
Gelman et al, 2013). The use of multilevel modeling in Learning Sciences research has been suggested in the past (Stahl et al., 2008), 
though it has not been widely adopted. Multilevel regression models allow researchers to predict variation in continuous, nominal, 
and count-based outcomes while accounting for the clustering of students by pre-existing conditions such as class or school (Gelman 
and Hill, 2006). In addition, multilevel models form the basis for individual growth models, which allow researchers to model 
changes in outcomes of interest over time (Singer & Willett, 2003). Measures from validated fidelity instruments further explain 
differences in learning and help researchers identify criteria for success in transferring these learning environments into new 
classrooms. Moreover, a Bayesian multilevel modeling approach allows researchers to aggregate data from multiple trials in a DBR 
cycle of studies (Gelman et al., 2013; Gelman et al., 2020) and allows researchers to account for measurement error and missing 
data directly (McElreath, 2020). 

5. Examples of RDBR 

To illustrate our proposed methods, it is necessary to first discuss a simplified case study, and then give further examples of 
the approach. For pedagogical purposes, as well as for brevity, we abbreviated the theoretical framing that justified this research 
and focused our conversation on choices of design and analysis that align with the above recommendations. Further details of the 
studies involved are found in Bressler & Bodzin (2013), Bressler & Bodzin (2016), and Bressler et al. (2019). We explored how the 
use of an augmented reality-based science curriculum, School Scene Investigators, in a middle-grade science setting might support 
hypothesized links between engagement and interest (Renninger et al, 2018). Students worked collaboratively to solve two mysteries 
by scanning QR codes strategically placed in their school and working through a game-based curriculum. While playfully learning, 
students gathered the required evidence and tried to solve the mystery at hand.  

This DBR study highlights four of the pillars of RDBR as follows. 



4 
 

EIET 2023, Vol 3, Issue 3, 1–7, https://doi.org/10.35745/eiet2023v03.03.0001 
 

 Measurement Matters 
The flow instrument used in the study was validated and employed in previous research (Jackson, Eklund, & Martin, 2010). 
In addition, the validity of the instrument in the present data was confirmed via CFA, and instruments were tested for and 
found to be reliable, with the assessment in each phase demonstrating a Cronbach’s alpha score of 0.80 or greater. 

 Learning is Longitudinal 
The scientific practice underscores that indexed student learning is developed by collecting and evaluating artifacts of 
student learning over time, thus capturing the longitudinal nature of student conceptual change. Details of the procedures 
used to derive the measure are found in Bressler & Bodzin (2016). 

 Use Samples Smartly 
For the purpose of this case study, we examined three studies conducted in a broader DBR cycle. The first was a small-
scale study (n = 68) testing key design elements in an after-school setting with 6th-8th grade students. The second was a 
larger scale-up study (n=208) testing the robustness of design changes with 8th-grade students in a different school. The 
final study (n = 110) was conducted a year later in the same school as the second with a new group of students. By testing 
across different grade levels and schools, the design changes and detected relationships better captured the heterogeneity 
common to broaden the implementation of innovations. 

 Invest in Fidelity 
Researchers were on-site for each of the implementation studies to ensure that the augmented reality curriculum was used 
as designed. Researchers tracked any deviations or issues, such as technology failures, which might impact the efficacy of 
the intervention. As a result, researchers were able to better understand some of the variation in results, as seen below. 

In addition to the aforementioned design principles being adhered to, we analyzed the results of each study using Bayesian 
multilevel logistic regression models (Gelman & Hill, 2006). Based on the results, we modeled the relationship between student 
engagement/flow and their self-reported gender in a way that maximized out-of-sample predictive power. Figure 1 presents the 
model estimated relationship between gender and flow across each of the studies, as well as a model that aggregates the findings 
across all of the studies. The relationship was generally positive, with the studies with higher sample sizes having more precise 
estimates of the relationship. When looking across all of the studies, on average, girls reported flow scores slightly over 0.2 units of 
standard deviation (SD) higher than their peer boys. 

 

Fig. 1. Model estimated relationship between gender (girl = 1, boy = 0) and flow scores for students engaged in an augmented reality-
enhanced science curriculum across three iterative DBR studies. Shapes are median posterior estimates; thin lines are 90% Credible 
Intervals; thick lines are 50% Credible Intervals. All models were fitted using Bayesian multi-level models.  

It is important to note that the pillars of RDBR have been applied more broadly, as well. For example, various RDBR principles 
can also be found throughout the design, implementation, and analysis of the suite of technology-enhanced science curricula 
developed by the EcoLearn group at the Harvard Graduate School of Education (Dede et al., 2019). Leveraging various types of 
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immersive virtual environments, the curricula are designed to help teach students about ecosystems and causal patterns in multi-
user virtual environments (Grotzer et al., 2013; Metcalf et al., 2018) and via augmented reality (Kamarainen et al, 2018), to include 
experimentation into their science-based inquiry (Dede et al., 2017), and to help elementary students develop computational thinking 
skills by studying trends in ecosystems (Metcalf et al., 2021). All of these powerful learning supports were studied iteratively, 
leveraging the pillars of RDBR in various ways. 
 Measurement Matters 

Across the various studies, measures of student learning and affective change were based on previously validated 
instruments (e.g., Chen at al., 2016) or were rigorously tested for evidence of validity and reliability prior to being used for 
inference and decision-making (e.g., Tutwiler et al., 2016). This increased the likelihood of detecting important trends in 
the data and helped to reduce residual variance. 

 Learning is Longitudinal 
The design and culminating pilot studies for the various learning scaffolds tracked changes to student learning and attitude 
over time (e.g., Cuzzolino et al., 2019; Metcalf et al., 2020), and longitudinally modeled changes in student behavior within 
the immersive learning environments (e.g., Tutwiler, 2019). Mappings of student movement through the virtual 
environments were also tracked over time (e.g., Courter et al., 2014; Grotzer et al., 2015).  

 Use Samples Smartly 
Classes of students were selected from schools that varied on demographic and socio-economic dimensions, allowing the 
findings of the various final pilot studies to be more broadly generalizable and better guide decision making (e.g., Metcalf 
et al., 2013; Cuzzolino et al., 2019).  

 Invest in Fidelity 
During the design and quasi-experimental pilot studies, researchers were on site to help ensure fidelity of implementation 
(e.g., Metcalf et al., 2013), and specific rubrics were developed to track fidelity of implementation over time (e.g., 
McGivney et al., 2019). This allowed for a more meaningful interpretation of the observed effects of implementation over 
time.  

The data from these various studies were analyzed in ways that accounted for their multilevel structure, with students often 
being clustered by class, teacher, and school (e.g., Kamarainen et al., 2013; Cuzzolino et al., 2019; Tutwiler, 2019).   

6. Conclusion 

For the past three decades, Learning Scientists have leveraged DBR to explore the design and implementation of learning 
environments (Brown, 1992). Changes in evidentiary standards in the broader social science research community, largely in light 
of the replication crisis, have resulted in evolving best practices in quantitative research (Frias-Navarro et al., 2020). In this paper 
we align DBR with these changes (Fig. 2), resulting in more robust, transferable findings that can help to guide future research and 
practice. Increasing the focus on measurement error and focusing on longitudinal modeling will increase the power and precision 
of DBR studies. We refer to this framework as Robust Design Based Research (RDBR).  

Choosing diverse samples of students, tracking factors that indicate the fidelity of implementation, and integrating data from 
across multiple implementation and pilot studies will help researchers to predict what facets of their designs will increase their 
transfer to other classrooms. In addition, using RDBR design principles will also help researchers to move the findings of their 
implementation and culminating pilot studies forward in robust, scaled-up studies of efficacy and impact using traditional cluster 
randomized control-based methods (Murnane & Willett, 2010). Facilitating the scale-up of the study of learning environments will, 
in the long run, allow stakeholders to make better informed decisions about what might work for their students. 

 
Fig. 2. Robust Design-based Research (RDBR): The four pillars enacted in a multilevel Bayesian framework. 
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